首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrasound elastography has developed into an imaging modality suitable for detection and diagnosis of cancers in the breast, prostate, and thyroid and for monitoring ablative therapies in the liver, kidneys, and other sites. In this article, a new approach is described that enables the reduction of noise artifacts in elastography without a significant reduction in either the contrast or spatial resolution. The technique uses angular-weighted compounding of local angular strains estimated from echo signals scanned at different insonification angles. Strain estimated along angular insonification directions can be separated into strain tensor components along the axial (direction of compression) and lateral directions. The mechanical stimulus is applied only along one direction. Angular-weighting factors are derived from the relationship between the axial and lateral strains under the assumption of tissue incompressibility. Experimental results using a uniformly elastic, tissue-mimicking phantom demonstrate the improvement in the signal-to-noise ratio obtained with angular-weighted compounding. Variation in the signal-to-noise ratio obtained using different angular increments also is investigated. Elastograms obtained from an inclusion phantom also demonstrate the improvement in contrast detail resolution obtained using spatial-angular compounding.  相似文献   

2.
The development of detectors often lags the development in X-ray sources. However, advanced detectors are critical for fully utilizing and exploiting the capabilities of the new bright sources. We report on the development of a modular high frame rate detector for synchrotron applications such as small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS). The detector consists of four modules, each providing an imaging area of 5×5 cm(2) and capable of frame rates of 200 frames per second (fps) with full resolution, and 650 fps with smaller region of interest (ROI). Details of the detector design and experiments at synchrotron beamlines are discussed in the paper.  相似文献   

3.
Based on the high frame rate (HFR) imaging method developed in our lab, an extended high frame rate imaging method with various transmission schemes was developed recently. In this method, multiple, limited-diffraction array beams or steered plane wave transmissions are used to increase image resolution and field of view as well as to reduce sidelobes. Furthermore, the multiple, limited-diffraction array beam transmissions can be approximated with square-wave aperture weightings, allowing one or two transmitters to be used with a multielement array transducer to simplify imaging systems. By varying the number of transmissions, the extended HFR imaging method allows a continuous trade-off between image quality and frame rate. Because multiple transmissions are needed to obtain one frame of image for the method, motion could cause phase misalignment and thus produce artifacts, reducing image contrast and resolution and leading to an inaccurate clinical interpretation of images. Therefore, it is important to study how motion affects the method and provide a useful guidance of using the method properly in various applications. In this paper, computer simulations, in vitro and in vivo experiments were performed to study the effects of motion on the method in different conditions. Results show that a number of factors may affect the motion effects. However, it was found that the extended HFR imaging method is not sensitive to the motions commonly encountered in the clinical applications, as is demonstrated by an in vivo heart experiment, unless the number of transmissions is large and objects are moving at a high velocity near the surface of a transducer.  相似文献   

4.
One of the great challenges for understanding muscular diseases is to assess noninvasively the active and passive mechanical properties of the musculoskeletal system. In this paper we report the use of ultrafast ultrasound imaging to explore with a submillimeter resolution the behavior of the contracting tissues in vivo (biceps brachii). To image the contraction, which is a very brief phenomenon (<100 ms), a recently designed ultrasound scanner prototype able to take up to 6000 frames/s was used. A very high frame rate from 1000 to 2500 frames/s was used to image the cross section plane of the muscle (transverse to fibers) enabling us to catch in real time the muscle contraction during a transient electrostimulation. Tissue velocities were obtained from radiofrequency based speckle tracking techniques and their profiles are discussed with respect to electrostimulation intensities and pulse repetition frequencies for different volunteers. Three-dimensional (3-D) very high frame rate movies were also acquired by repeating the experiment for different acquisition planes while triggering the imaging system with the electrostimulation device. The reconstructed 3-D velocity field allows the full localization of the contracting fibers bundle. This ultrasound technique, referred to as echo mechanomyography, offers new perspectives for in vivo and in situ noninvasive muscle diagnosis of an active contractile tissue.  相似文献   

5.
Ultrasonic elastography is an imaging technique providing information about the relative stiffness of biological tissues. In general, elastography suffers from noise artifacts, which degrade lesion detectability and increase the likelihood of misdiagnosis. This paper proposes a method called transmit- side frequency compounding for elastography (TSFC). Beamforming is modified to transmit frames with N alternating center frequencies. Pairs of frames with the same center frequency are used to calculate sub-elastograms that are then averaged to produce one compounded elastogram. Simulation results based on an uniformly elastic tissue model demonstrate the decorrelation among sub-elastograms and the improvement in elastographic signal-to-noise ratio (SNRe) achieved by compounding sub-elastograms. An elastic phantom experiment further validates the noise reduction obtained by the proposed technique.  相似文献   

6.
Hafnium nitride (HfNx) coatings were prepared via very high rate reactive sputtering in an ArN2 atmosphere over a wide range of nitrogen concentrations. The color of the coatings varied from a pale yellow at low nitrogen levels to a rich golden yellow color at the higher nitrogen levels. This color is different from the greenish yellow color for chemically vapor-deposited HfN coatings. As the nitrogen content of the films was increased, the cell size also increased, which is contrary to what has been reported for bulk HfNx. The reactively sputtered HfNx coatings have a (111) preferred orientation, and the cell size is 4.56 Å for the rich golden-colored films compared with 4.52 Å for the bulk material. In addition, the reactively sputtered HfNx coatings have an unexpectedly high Vickers hardness of 2570 kgf mm-2 (for a 1000 gf load). The bulk HfN hardness is reported to be 1600 kgf mm-2. The HfN coatings have very high compressive residual stresses, and the adhesion of these coatings to M2 tool steel, as measured by the Laboratoire Suisse de Recherches Horlogères scratch tester, is excellent.  相似文献   

7.
Limited diffraction beams have a large depth of field and have many potential applications. Recently, a new method (Fourier method) was developed with limited diffraction beams for image construction. With the method and a single plane wave transmission, both 2D (two-dimensional) and 3D (three-dimensional) images of a very high frame rate (up to 3750 frames/s for a depth of 200 mm in biological soft tissues) and a high signal-to-noise ratio (SNR) can be constructed with relatively simple and inexpensive hardware. If limited diffraction beams of different parameters are used in both transmission and reception and transducer aperture is shaded with a cosine function, high-resolution and low-sidelobe images can be constructed with the new method without montage of multiple frames of images [the image quality is comparable to that obtained with a transmit-receive (two-way) dynamically focused imaging system]. In this paper, the Fourier method was studied with both experiment and computer simulation for 2D B-mode imaging. In the experiment, two commercial broadband 1D array transducers (48 and 64 elements) of different aperture sizes (18.288 and 38.4 mm) and center frequencies (2.25 and 2.5 MHz) were used to construct images of different viewing sizes. An ATS539 tissue-equivalent phantom of an average frequency-dependent attenuation of 0.5 dB/MHz/cm was used as a test object. To obtain high frame rate images, a single plane wave pulse (broadband) was transmitted with the arrays. Echoes received with the arrays were processed with both the Fourier and conventional dynamic focusing (delay-and-sum) methods to construct 2D B-mode images. Results show that the quality (resolution and contrast) of constructed images is virtually identical for both methods, except that the Fourier method is simpler to implement. Both methods have also a similar sensitivity to phase aberration distortions. Excellent agreement among theory, simulation, and experiment was obtained.  相似文献   

8.
In echocardiography, especially in 3D echocardiography, achieving high frame rates is a major challenge. A suggested solution is parallel receive beamforming. Without any compensation, this approach is known to produce block-like artifacts, where each block corresponds to one parallel receive group. In this work, in vitro imaging, in vivo imaging, and simulations were used to investigate the artifacts. In vitro, imaging a tissue phantom, the artifacts were successfully compensated for. However, in vivo, imaging the heart, the compensation techniques no longer sufficed and the artifacts persisted. With in vivo imaging, aberrating tissue layers are present between the heart and the probe. To investigate the effects of aberration on a parallel receive system, an in vitro experiment was performed with and without a silicon phase aberrator in front of the probe. The aberrator caused the artifacts to appear even when compensation techniques were applied. Simulations confirmed the measured results and indicated that distorted beam profiles and decorrelation between parallel receive groups caused the artifacts. To quantify the magnitude of the artifacts, a correlation-based indicator was developed. The indicator separated images with and without artifacts and confirmed that the artifacts appeared from the combination of parallel receive beams and aberration.  相似文献   

9.
Shear elasticity probe for soft tissues with 1-D transient elastography   总被引:5,自引:0,他引:5  
Important tissue parameters such as elasticity can be deduced from the study of the propagation of low frequency shear waves. A new method for measuring the shear velocity in soft tissues is presented in this paper. Unlike conventional transient elastography in which the ultrasonic transducer and the low frequency vibrator are two separated parts, the new method relies on a probe that associates the vibrator and the transducer, which is built on the axis of the vibrator. This setup is easy to use. The low frequency shear wave is driven by the transducer itself that acts as a piston while it is used in pulse echo mode to acquire ultrasonic lines. The results obtained with the new method are in good agreement with those obtained with the conventional one.  相似文献   

10.
11.
Yao T  Minemoto T 《Applied optics》2003,42(26):5290-5301
A joint transform correlator has been constructed by a spatial light modulator that uses the electroabsorption effect of GaAs crystal and operates at a high frame rate a TV camera with logarithmic response and a personal computer. In the system, logarithmic values of joint power spectra generated in an optical system were electrically digitized and inverse-Fourier transformed. The system has accomplished the operation of correlation with a throughput time smaller than 10 ms per an input image.  相似文献   

12.
13.
14.
Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).  相似文献   

15.
Ultrasound imaging is an important modality used in medical imaging. One of the significant stages in the ultrasound imaging is the beamforming process. This article proposes a new technique for reducing the overall computational time of adaptive linear ultrasound imaging. The method uses the discrete cosine transform-based reconstruction for missing data imputation. The novelty of the paper is that we do not need to beam-form the total scan lines, so the time of image construction can be saved significantly. In other words, a fraction of the total scan lines is selected for beamforming and the others are assumed to have values as Not-a-Number (NaN). The proposed reconstruction technique tries to assign appropriate values to the NaN ones. We applied the proposed method to the simulated and experimental radio frequency (RF) datasets for resolution and contrast evaluation. Results showed that the proposed technique is near to the minimum variance (MV) method in terms of resolution and contrast, and has less computational time for image formation compared to the MV. As some quantitative examples in some experiments we have formed only 50% and 33% of the total lines and reconstructed the rest, then we have been able to increase the frame rate twice and three times, respectively, which can be very useful in many applications, especially in echocardiography imaging. In addition, since the execution time of the reconstruction algorithm is not very significant, we were also able to increase the speed by two and three times while achieving an error of less than 10% compared to the case of using all image lines.  相似文献   

16.
This paper describes a new technique for two-dimensional (2-D) imaging of the motion vector at a very high frame rate with ultrasound. Its potential is experimentally demonstrated for transient elastography. But, beyond this application, it also could be promising for color flow and reflectivity imaging. To date, only axial displacements induced in human tissues by low-frequency vibrators were measured during transient elastography. The proposed technique allows us to follow both axial and lateral displacements during the shear wave propagation and thus should improve Young's modulus image reconstruction. The process is a combination of several ideas well-known in ultrasonic imaging: ultra-fast imaging, multisynthetic aperture beamforming, 1-D speckle tracking, and compound imaging. Classical beamforming in the transmit mode is replaced here by a single plane wave insonification increasing the frame rate by at least a factor of 128. The beamforming is achieved only in the receive mode on two independent subapertures. Comparison of successive frames by a classical 1-D speckle tracking algorithm allows estimation of displacements along two different directions linked to the subapertures beams. The variance of the estimates is finally improved by tilting the emitting plane wave at each insonification, thus allowing reception of successive decorrelated speckle patterns.  相似文献   

17.
随着社会经济的快速发展,各行各业对电力的依赖越来越强,同时,地面建构筑物高度不断上升,低洼地势被不断填埋,给部分超高压输电线路的正常运转带来了安全隐患,带电整体提升这些输电线路成为必然.介绍了超高压输电线路提升技术的设计思路,阐述了提升架的组成和作用,并对提升架的稳定性进行了校核.  相似文献   

18.
Application examples of a fully-programmable analogic focal plane array processor are introduced. One mixed-signal sensory/processing chip is presented, which is capable of capturing, processing, and evaluating over 10,000 images in a second. Morphological analysis of silhouettes and sparks were carried out and real-time decision making was performed running at this extraordinary high frame-rate.  相似文献   

19.
针对大规模地形三维可视化系统在不同性能计算机平台上运行速度的差异,提出了一种基于帧速率的地形渲染数据量负反馈自适应控制算法,该算法以数据量与帧速率关系模型为基础,通过获取精确的系统渲染周期耗时,计算符合帧速率要求的地形数据量,并进行动态数据调整.基于FLTK(和OpenGL的系统实验表明,该算法可以根据特定计算机平台的性能,快速调整渲染数据量,使地形可视化系统稳定运行干预先设定的帧速率区间.该算法有效增强了三维地形可视化系统的平台适应能力,同时算法思想对于类似系统负载与耗时关系的研究也有借鉴意义.  相似文献   

20.
建立了高速列车-框架型板式轨道的动力学模型.基于弹性薄板振动理论和加权余量法,推导了框架型轨道板关于振型坐标的常微分方程.对比分析了运行速度为300 km/h的CRH2-300动车组作用下框架型和平板型板式轨道动力响应,结果表明:两种轨道结构的钢轨垂向位移、钢轨支点反力差别不大,框架型板式轨道的轨道板垂向位移、CA砂浆动应力均大于平板型.分析了CA砂浆弹性模量、板下胶垫刚度对框架型板式轨道动力响应的影响,计算了框架型轨道板的动应力分布,结果表明:随CA砂浆弹性模量的增大,框架型轨道板垂向位移减小,CA砂浆动应力增大,对钢轨垂向位移和钢轨支点反力影响不大;增设板下胶垫可以有效降低CA砂浆动应力;框架型轨道板最大拉应力小于混凝土抗拉强度标准值,可保证强度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号