首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
硅氧烷接枝改性丙烯酸树脂的合成及应用   总被引:3,自引:0,他引:3  
以多种丙烯酸酯类单体为原料合成羟基丙烯酸树脂,将硅酸乙酯部分水解缩聚制备聚硅氧烷,用硅氧烷对丙烯酸树脂接枝改性,制备出以丙烯酸树脂为主链、以具有水解特性及低表面能的有机硅为侧链的接枝共聚物,以此共聚物为基料,制备自抛光及低表面能复合型防污涂料.采用红外光谱、热重分析对接枝共聚物进行了表征,并测算了共聚物及制备的防污涂料涂膜的表面能.结果表明,合成的接枝共聚物与设计结构相符,其表面能达到23.63 mN/m,可用于防止海生物附着的防污涂料.  相似文献   

2.
合成了具有自抛光性能的丙烯酸锌树脂,试验结果表明,丙烯酸锌30%(wt,质量分数,下同)、甲基丙烯酸甲酯35%、丙烯酸乙酯20%、丙烯酸丁酯15%、引发剂偶氮二异丁腈5%,反应温度110℃时,合成的树脂分子量10000,玻璃化转变温度20℃,树脂的水解性能可满足要求。采用该丙烯酸锌树脂制备了无锡环保型自抛光防污涂料,防污剂以氧化亚铜为主,复配有机防污剂吡啶硫酮铜和吡啶硫酮锌5%~10%,该防污涂层的抛光速率8~10μm/月、铜离子渗出率25μg/(cm~2·d),经实船涂装海洋航行36个月验证具有良好的防污效果。  相似文献   

3.
鉴于4,5-二氯-2-正辛基-4-异噻唑啉-3-酮(DCOIT)具有广谱高效、环保低毒等优点,DCOIT逐渐成为替代有机锡(TBT)的一种新型防污剂,在防污材料中越来越得到广泛的关注和应用。本文总结了DCOIT环境归宿及其生态毒性的判断方法,介绍了DCOIT在防污材料的应用情况及防污效果,并对近年来DCOIT防污剂的控释技术进行了综述,最后对该防污剂的应用和发展趋势进行了展望。  相似文献   

4.
舰船高性能防腐蚀防污涂料研究进展   总被引:1,自引:0,他引:1  
简要论述了海洋防腐蚀防污涂料的发展历史和研究现状,重点论述了舰船高性能防腐蚀防污涂料的最新研究进展。有机锡自抛光防污涂料被禁止使用之后,基于丙烯酸锌、丙烯酸铜和丙烯酸硅烷酯的自抛光防污涂料得到了广泛应用。基于含防污功能基团树脂的防污涂料、基于降解树脂的防污涂料以及基于表面结构特性的防污涂料技术成为当前防污涂料研究的热点。文中详细报道了降解树脂的结构对降解性能及力学性能影响规律,以及表面结构特性对污损释放型防污涂料防污性能的影响规律。随着环境保护法规的日趋严格,防腐蚀涂料向无溶剂(或高固体)、长效方向发展。报道了提高涂层的湿态附着力和致密性的方法,采用该方法可以大幅提高涂层的力学性能和耐蚀性能,满足了远洋和深海装备发展需求。  相似文献   

5.
异噻唑啉酮衍生物是一种新型的杀菌防腐剂,因其杀菌防腐效果良好且无污染而被应用于防污涂料、工业用水、皮革、医药、化妆、造纸等领域。简单概述了异噻唑啉酮衍生物的杀菌机理和环境影响因素,重点概述了异噻唑啉酮衍生物近10年的制备和在各个领域的应用以及杀菌效果的研究进展。  相似文献   

6.
水性自抛光防污涂料的制备及评价   总被引:1,自引:0,他引:1  
制备了特殊的水性丙烯酸锌自抛光树脂并进行了表征,对水性丙烯酸锌自抛光防污涂料的配方及防污性能进行了研究工作。试验结果表明该自抛光防污涂料防污性能良好,并且具有低VOC含量、对海洋环境友好、施工简单方便、易于维护等特点。由于基体树脂具有自抛光性能,使得防污剂在海水中的溶出速率得到控制,这样可以延长防污期效,满足防污需求。  相似文献   

7.
本工作研究了苯骈三唑、二苯甲酮和噻唑啉酮类紫外线吸收剂,讨论了它们的物理、化学和光谱吸收特性与分子结构的关系,并指出磺酸基对其溶解性和吸收光谱的影响规律是:引入一个磺酸基时,其水溶性是二苯甲酮>苯骈三唑>噻唑啉酮;磺酸基使吸收光谱明显地蓝移,蓝移的强度是噻唑啉酮>苯骈三唑>二苯甲酮。  相似文献   

8.
制备了既具有低表面能性能又具有自抛光性能的含氟丙烯酸硅酯树脂,讨论了含氟丙烯酸单体用量对树脂水解性能的影响,并对树脂结构进行了表征;采用制备的含氟丙烯酸硅酯树脂制备了无锡环保型自抛光防污涂料,并对其性能进行了研究,结果表明该自抛光防污涂料具有良好的防污性能。  相似文献   

9.
本文采用预合成的聚丙烯酸与锌配位化合物直接接枝合成聚丙烯酸锌树脂,并以红外分析及DSC分析研究合成的可行性及树脂的玻璃转变温度,另外以动态磨蚀速率研究不同单体比例和不同链段长度对防污漆自抛光性能的影响。  相似文献   

10.
环境友好型有机硅改性丙烯酸树脂的合成及其用于海洋防污涂料的性能研究很有意义。以氨基硅油为原料,通过开环加成改性甲基丙烯酸缩水甘油酯(GMA),再与其他丙烯酸单体自由基聚合制备出氨基硅油改性丙烯酸树脂,借助FT-IR对其结构进行了表征,并以改性丙烯酸树脂为防污涂料成膜物制备了兼具自抛光特性/低表面能特性的防污涂料,考察了氨基硅油用量对涂料涂膜的附着力、柔韧性、接触角和表面能等的影响。结果表明:当氨基硅油用量为1%时,涂膜综合性能达到最佳,附着力、柔韧性达到一级,抗冲击强度≥50 kg·cm,硬度达到2 H,接触角为99.6°,表面能为23.3 m N/m;结合实海挂板试验显示,改性的防污涂料具有良好的防污性能。  相似文献   

11.
In this paper, we present a new method for inserting several triangulated surfaces into an existing tetrahedral mesh generated by the meccano method. The result is a conformal mesh where each inserted surface is approximated by a set of faces of the final tetrahedral mesh. First, the tetrahedral mesh is refined around the inserted surfaces to capture their geometric features. Second, each immersed surface is approximated by a set of faces from the tetrahedral mesh. Third, following a novel approach, the nodes of the approximated surfaces are mapped to the corresponding immersed surface. Fourth, we untangle and smooth the mesh by optimizing a regularized shape distortion measure for tetrahedral elements in which we move all the nodes of the mesh, restricting the movement of the edge and surface nodes along the corresponding entity they belong to. The refining process allows approximating the immersed surface for any initial meccano tetrahedral mesh. Moreover, the proposed projection method avoids computational expensive geometric projections. Finally, the applied simultaneous untangling and smoothing process delivers a high‐quality mesh and ensures that the immersed surfaces are interpolated. Several examples are presented to assess the properties of the proposed method.  相似文献   

12.
13.
A flow calorimeter for enthalpy increment measurements on condensed gases is presented. A better knowledge of the properties of the liquefied natural gas is needed, and therefore a liquid loop has been designed for our flow calorimeter. The fluid loop in the calorimeter is designed in order to avoid the two-phase region, since two phases would give compositional disturbances in the measurements. The avoidance of the two-phase region is made possible by increasing the pressure of the test fluid after the measurement section, then heating the fluid at super-critical pressure past the critical point. Finally, the fluid is throttled to the low-pressure gas state at the inlet condition of the compressor that circulates the fluid. To perform the pressure increase, a new cryogenic pump has been designed. To evaluate the new equipment, measurements were taken on liquid ethane over the temperature range 146–256 K at pressure between 0.9 and 5.1 MPa.  相似文献   

14.
On November 30, 2007, the China Association for Standardization (CAS) held a press conference at Beijing Diaoyutai State Guest House. Leaders from the China Household Electric Appliance Research Institute, the China Household Electric Appliance Association, and the China Consumers' Association attended and made speeches.……  相似文献   

15.
Standards are the basis for production enterprises to organize production, ex-factory inspection, trade (delivery) and technical exchanges, product certification, quality arbitration and supervision.……  相似文献   

16.
In the present study a high‐boron high speed steel (HSS) roll material was designed. Many expensive alloy elements have been substituted by cheap boron alloy, and high‐boron high speed steel roll has been manufactured by centrifugal casting method. The microstructures, mechanical properties and wear resistance of centrifugal casting high‐boron high speed steel roll have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), and X‐ray diffraction (XRD) analysis, hardness test, impact test and wear test. The results indicated that the solidification microstructures of high‐boron high speed steel roll consisted of M2(B,C), (W,Mo)2(B,C), M3(B,C), M23(B,C)6 type borocarbides and martensite, a small amount of retained austenite. Borocarbides were continuously distributed over the grain boundary. After quenching from 1050 °C, local broken network appeared in partial borocarbides, and fine secondary borocarbide precipitated from the matrix. After tempering from 525 °C, the amount of precipitated borocarbide increased significantly. After heat treatment, the hardness of high‐boron high speed steel roll excelled 60 HRC, and its impact toughness excelled 8.0 J/cm2. The single groove steel rolling amount of high‐boron high speed steel rolls increases by 500% than that of bainite cast iron roll, when the rolls are used in K1 mill housing of bar mill.  相似文献   

17.
A four-ball tester was used to evaluate the anti-wear performance of three kinds of organomolybdemun compounds in the engine oils, i. e., molybdenum dialkyldithiophosphate (MoDDP), molybdenum dialkyldithiocarbamate ( MoDTC), and sulphur and phosphorus freeorganomolybdeum (Molybdate). The results indicate that a low concentration of MoDDP doesn' t improve the anti-wear properties of the commercial engine oils, but a high concentration of MoDDP can obviously improve the anti-wear properties and the load-carrying capacity of the engine oils. MoDTC doesn' t improve the antiwear properties of the engine oils, but worsens the anti-wear properties of the oils. Signifi can timprove ment of frictional and wear characteristics is obtained with Molybdate added in the commercial engine oils and the formulated oils.  相似文献   

18.
The definition of the thixotropy is a decrease in viscosity with time in shear and a subsequent recovery of viscosity after the shear deformation is removed.We ...  相似文献   

19.
We associate a variety of innovations with the term "Industry 4.0". The pioneer of many 4.0 modifications forms the basisfor the trend towards the integrated di...  相似文献   

20.
Several researches have been reported about the characteristic of β-Ga2O3 nanowires which was synthesized on nickel oxide particle. But indeed, recent researches about synthesis of β-Ga2O3 nanowires on oxide-assisted transition metal are limited to nickel or cobalt oxide catalyst. In this work, Gallium oxide (β-Ga2O3 ) nanowires were synthesized by a simple thermal evaporation method from gallium powder in the range of 700 - 1000℃ using the iron, nickel, copper, cobalt and zinc oxide as a catalyst, respectively. The β-Ga2O3 nanowires with single crystalline without defects were successfully synthesized at the reaction temperature of 850, 900 and 950℃ in all the catalysts. But optimum experimental condition in synthesis of nanowires varied with the kind of catalyst. As increasing synthesis temperature,the morphology of gallium oxide nanowires changed from nanowires to nanorods, and its diameter increased. From these results, we could be proposed that the growth mechanism of β-Ga2O3 nanowires was changed with synthesis temperature of nanowires. Microstructure and morphology of Synthesized nanowire was characterized by HR-TEM, FE-SEM, EDX and XRD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号