首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 510 毫秒

1.  基于改进粒子群算法的电力系统无功优化研究  
   唐志琼  韩学军  孙守刚《陕西电力》,2009年第37卷第1期
   阐述了一种改进粒子群的无功优化方法.粒子群优化(PSO)算法是进化计算领域中的一个新的分支,其源于对鸟群和鱼群群体运动行为的研究.针对粒子群优化容易陷入局部极值点的问题,文章提出混沌粒子群算法,该算法可以较好地避免PSO算法过快收敛于局部最优解,有较快的收敛速度.文中将该算法应用于求解电力系统无功优化问题,并与标准PSO算法的性能进行了对比,仿真计算证明该算法是有效、可行的.    

2.  抛物型方程反问题的混合粒子群算法  
   闵涛  李辉  杨晓莉  卢鸿鹏《计算机工程与应用》,2011年第47卷第16期
   粒子群优化算法(PSO)是一种新兴的优化技术,它的思想来源于人工生命和演化计算理论。PSO通过粒子追随自己找到的最好解和整个群的最好解来完成优化。粒子群算法简单容易实现,可调参数少,已经得到了广泛研究和应用。提出了一种结合有限元方法求解偏微分方程反问题的混合粒子群算法,在对多个抛物型方程反问题模型测试的数值模拟中都得到了较好的结果,体现了该算法的有效性、通用性和稳健性。    

3.  粒子群优化技术的研究与应用进展  
   苏守宝  汪继文  方杰《微机发展》,2007年第17卷第5期
   粒子群优化(PSO)算法是一种新兴的基于群智能搜索的优化技术,它是通过粒子追随个体最优解和群体最优解来完成优化,且算法简单、易实现、参数少,具有较强的全局优化能力,可有效应用于科学与工程实践中。文中综述了PSO各种改进技术、研究热点问题及其应用进展情况并指出了PSO的发展趋势及未来研究方向。    

4.  粒子群优化技术的研究与应用进展  被引次数:4
   苏守宝  汪继文  方杰《计算机技术与发展》,2007年第17卷第5期
   粒子群优化(PSO)算法是一种新兴的基于群智能搜索的优化技术,它是通过粒子追随个体最优解和群体最优解来完成优化,且算法简单、易实现、参数少,具有较强的全局优化能力,可有效应用于科学与工程实践中。文中综述了PSO各种改进技术、研究热点问题及其应用进展情况并指出了PSO的发展趋势及未来研究方向。    

5.  一种改进的混沌粒子群优化算法  
   汤可宗  丰建文《黑龙江电子技术》,2013年第10期
   粒子群优化算法(PSO)自提出以来,已经被广泛地应用于求解各类复杂的优化问题,过去对粒子群算法的研究主要集中在融入新的优化方法或对其相关参数进行调整,但这样只会使得PSO更加复杂.针对这一问题,文中提出一种改进的混沌粒子群优化算法(ICPSO),ICPSO从粒子群优化算法的时间与寻优实时角度出发(即在较短的时间内获得较好的解),对粒子速度更新算子进行了简化,每隔一定代数后,在最优解邻近区域引入混沌扰动以避免种群陷入局部最优解.数值实验结果表明:提出的算法相对于文献给出的PSO改进算法,不仅能够获得较好的最优解,而且还具有较快的收敛速度和较好的稳定性.    

6.  用于求解对称旅行商问题的粒子群算法和蚂蚁算法的融合  
   郑洁  李凯  李晓  丁建立《计算机应用与软件》,2010年第27卷第1期
   近年来,基于仿生学的随机优化技术成为学术界研究的重点问题之一,并在许多领域得到应用。粒子群优化(PSO)算法和蚂蚁算法ACO(Ant Colong Optimization)是随机全局优化的两个重要方法。PSO算法初始收敛速度较快,但在接近最优解时,收敛速度较慢,而ACO正好相反。结合二者的优势,先利用粒子群算法,再结合蚂蚁算法,以对称旅行商问题为例进行了仿真实现。实验结果表明,先利用PSO算法进行初步求解,在利用蚂蚁算法进行精细求解,可以得到较好的效果。    

7.  基于混沌粒子群优化的支持向量机训练方法  
   王燕  孙向风  李明《计算机工程》,2010年第36卷第23期
   为使粒子群优化算法初始粒子均匀分布在解空间,通过对混沌运动的遍历性和粒子群优化算法中惯性权重的分析,提出一种混沌粒子群算法。该算法对Circle模型进行改进,将其引入粒子群算法中,避免了粒子群算法陷入局部最优。给出应用混沌粒子群算法训练SVM的方法,并将其应用于人脸识别。仿真实验结果表明,改进的CPSO SVM方法比CPSO SVM和PSO SVM方法有更好的识别性能。    

8.  改进PSO算法在二维下料问题中的研究  
   张菡《广东电脑与电讯》,2014年第1期
   粒子群优化(PSO)算法是一种基于集群智能的进化计算方法,在该方法中粒子通过追随自己找到的最优解和种群最优解完成优化。文章将PSO算法应用到三角形优化下料问题的研究中,给出了具体的实施流程,为了提高PSO算法的收敛精度,避免早熟现象的产生,对PSO进行了改进,提出一种启发式PSO算法。通过对三角形的优化下料进行仿真,仿真结果显示改进后的启发式粒子群优化算法在收敛效果和材料的利用率方面均有显著的提高。    

9.  一种改进的粒子群优化算法  被引次数:1
   王德强  罗琦  祁佳《计算机工程与应用》,2008年第44卷第9期
   粒子群优化算法(PSO)是一种生物进化技术。依据粒子间的相互影响发现搜索空间中的最优解。通过分析基本PSO算法的进化方程,研究了一种具有更好收敛速度和全局收敛性的改进PSO算法。5个典型测试函数的仿真实验表明该改进算法是行之有效的。    

10.  动态惯性权重粒子群优化算法  被引次数:1
   虞斌能  连志刚  焦斌《上海电机学院学报》,2008年第11卷第3期
   针对基本粒子群优化(Particle Swarm Optimization,PSO)算法的不足,提出动态惯性权重粒子群优化算法,其惯性系数随算法进化而动态减少。仿真结果验证了该改进算法的有效性:算法的收敛速度比基本PSO算法的收敛速度快;同时,算法得到的最优解比基本PSO算法好。    

11.  粒子群优化算法在电力系统中的应用综述  
   陈建华  李先允  邓东华  廖德利《继电器》,2007年第35卷第23期
   粒子群优化(PSO)算法是一种新兴的群体智能优化技术,其思想来源于人工生命和演化计算理论,PSO通过粒子追随自己找到的最优解和整个群的最优解来完成优化。该算法简单易实现,可调参数少,已得到广泛研究和应用。在大量参阅国内外相关文献的基础上,简要介绍了PSO算法的工作原理,较为全面地详述了粒子群优化方法在电力系统中的应用,如电网规划、检修计划、短期发电计划、机组组合、负荷频率控制、最优潮流、无功优化、谐波分析与电容器配置、参数辨识、状态估计、优化设计等方面,并对今后可能的应用指出了研究方向。    

12.  粒子群优化算法在电力系统中的应用综述  
   陈建华  李先允  邓东华  廖德利《电力系统保护与控制》,2007年第35卷第23期
   粒子群优化(PSO)算法是一种新兴的群体智能优化技术,其思想来源于人工生命和演化计算理论,PSO通过粒子追随自己找到的最优解和整个群的最优解来完成优化.该算法简单易实现,可调参数少,已得到广泛研究和应用.在大量参阅国内外相关文献的基础上,简要介绍了PSO算法的工作原理,较为全面地详述了粒子群优化方法在电力系统中的应用,如电网规划、检修计划、短期发电计划、机组组合、负荷频率控制、最优潮流、无功优化、谐波分析与电容器配置、参数辨识、状态估计、优化设计等方面,并对今后可能的应用指出了研究方向.    

13.  粒子群算法在投影寻踪模型优化求解中的应用  被引次数:5
   陈广洲  汪家权  解华明《计算机仿真》,2008年第25卷第8期
   粒子群优化(Particle Swarm Optimization,PSO)算法是一种新兴的优化技术,其思想来源于人工生命和进化计算理论.PSO算法通过粒子追随自己找到的最好解和整个群体的最好解完成问题的优化.针对投影寻踪模型中的最佳投影方向优化问题.运用PSO算法和惩罚函数法相结合对该优化问题进行了计算.仿真实验结果表明:PSO算法对于求解有复杂约束的非线性目标函数优化问题是可行的,且算法的收敛速度快,编程结构简单,易于实现,从而为各领域运用投影寻踪模型评价方法提供了强有力的寻优方法,具有较广的应用前景.    

14.  粒子群优化算法及其应用  被引次数:20
   范娜  云庆夏《信息技术》,2006年第30卷第1期
   粒子群优化(PSO)算法是一种新颖的演化算法,它属于一类随机全局优化技术,PSO算法通过粒子间的相互作用在复杂搜索空间中发现最优区域。PSO的优势在于简单而又功能强大。介绍了基本的PSO算法、研究现状及其应用,并讨论将来可能的研究内容。    

15.  改进粒子群算法在调制模式识别中的应用  
   秦立龙  王振宇《计算机工程与科学》,2013年第35卷第7期
   针对标准PSO算法易陷入局部最优化和LDW-PSO算法不能适应复杂、非线性优化的问题,提出了一种基于信息熵理论的改进粒子群算法(EPSO).该方法利用信息熵值确定惯性权值,使之具有自适应地调整“探索”和“开发”的能力.将新算法应用于调制模式识别中SVM分类器最优参数值的确定,仿真研究实明,该算法性能稳定.与标准PSO和LDW-PSO算法相比,EPSO算法有效增强了跳出局部最优解的能力,具有较好的工程应用性.    

16.  基于粒子群算法的火电厂机组负荷优化分配  被引次数:1
   李铁苍  周黎辉  张光炜  綦守荣《华北电力大学学报(自然科学版)》,2008年第35卷第1期
   通过研究粒子群(PSO)优化算法的基本原理,分析了该算法中各个参数的不同取值对算法搜索能力和收敛速度的影响,并将PSO优化算法应用于电厂机组负荷优化分配问题的研究。通过在3台机组系统的应用,验证表明较之遗传算法等传统优化算法,PSO优化算法在优化结果、搜索区间控制以及收敛速度等方面具有较好的特性,能更好地达到或接近全局最优解。    

17.  浅谈粒子群算法与BP神经网络  
   聂琼《轻纺工业与技术》,2013年第42卷第1期
   粒子群优化(PSO)算法是一种新兴的优化技术,其思想来源于人工生命和演化计算理论.该算法简单易实行,可调参数少,已得到广泛研究和应用.现主要阐述了粒子群算法(PSO)和BP神经网络的特点,并分析了粒子群算法优化BP神经网络的必要性,同时对今后的研究前景作了具体的展望.    

18.  基于混合粒子群优化算法的医学图像配准  被引次数:3
   火元莲  齐永锋  吕振肃  马胜前《红外技术》,2007年第29卷第9期
   提出了一种基于粒子群算法PSO和Powell的混合优化算法,将PSO算法的全局搜索能力与Powell算法的局部寻优能力有机地结合起来.即在PSO算法每步迭代后对当前的局部最优解增加一步Powell局部寻优算法,进而保证了解的精确性的同时提高了求解的速度.将其应用于配准过程中对目标函数的最优化,取得了比较好的效果.    

19.  粒子群优化算法  被引次数:147
   李爱国  覃征  鲍复民  贺升平《计算机工程与应用》,2002年第38卷第21期
   粒子群优化(PSO)算法是一类随机全局优化技术,PSO算法通过粒子间的相互作用发现复杂搜索空间中的最优区域。PSO的优势在于简单容易实现而又功能强大。PSO已成为国际演化计算界研究的热点。该文介绍了基本的PSO算法、若干类改进的PSO算法及其应用,并讨论将来可能的研究内容。    

20.  基于量子粒子群算法的电力系统无功优化  
   宋云峰  李扬  刘新伟《东北电力技术》,2011年第32卷第5期
   量子粒子群优化算法(QPSO)避免了粒子群算法(PSO)不能保证收敛到全局最优解的缺点,认为粒子具有量子的行为,并且可以在整个可行解空间进行搜索。无功优化问题是带有离散变量的非线性、不连续、多约束、多变量的复杂优化问题,应用QPSO算法并结合动态调整罚函数的方法来解决无功优化问题。通过对IEEE-30节点和IEEE-14节点系统进行仿真计算,并与PSO算法、GA算法进行比较,表明该算法能更好地获得全局最优解。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号