首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对标准的有限元法分析声学问题时由于数值色散导致高波数计算结果不可靠问题,将分区光滑径向点插值法(cell-based smoothed radial point interpolation method, CS-RPIM)应用到二维声学分析中,推导了分区光滑径向点插值法分析二维声学问题的原理公式。该方法将问题域划分为三角形背景单元,每个单元进一步分成若干个光滑域,对每个光滑域进行声压梯度光滑处理,运用光滑Galerkin弱形式构造系统方程,并按有限元中方法施加必要的边界条件。CS-RPIM提供了合适的模型硬度,能有效降低色散效应,提高计算精度。对管道和二维轿车声学问题的数值分析结果表明,与标准有限元法相比,CS-RPIM具有更高的精度和准确度,在高波数计算时这种优势特别明显。  相似文献   

2.
研究借助气动-声学风洞试验平台,首先针对某高速列车的1:8缩尺比例的三车编组模型建立了气动噪声试验方法和突显不同的噪声源的模型处理方法,并结合流场外自由场传声器和传声器阵列的测量结果,分析了模型上的主要噪声源特性及对整个模型的贡献量大小。研究表明:转向架和受电弓噪声是模型的最主要噪声源,其次是车连接部位间隙,再次是鼻尖和排障器,最后是尾车,同时,并给出了这些噪声源的特性,这对于认识高速列车气动噪声和改善设计有重要的参考价值。研究也说明所提出的试验研究方法是一种研究高速列车气动噪声较为有效地方法。  相似文献   

3.
消声瓦声学性能计算方法研究   总被引:3,自引:0,他引:3  
首先建立均匀圆柱腔中弹性波的计算模型,然后利用该模型建立复合过渡型声腔结构消声瓦吸声性能计算的理论模型,并应用这一理论模型计算分析现有声腔结构消声瓦及几种变形的声腔结构声腔结构形式的消声瓦的吸声性能,讨论材料环境温度和材料参数变化对吸声性能的影响,最后总结消声瓦声腔结构和不同材料参数对吸声性能影响的基本规律.  相似文献   

4.
气动噪声数值计算方法的比较与应用   总被引:1,自引:0,他引:1  
当前气动噪声问题已日趋普遍和突出。虽然自Lighthill开创气动声学已有半个多世纪,但是由于气动声学方程的复杂性,因此在很长一段时间内都无法实现气动噪声的准确计算。计算流体力学和声学计算方法的成熟,数值计算正在成为解决气动噪声问题的主要工具。从气动声学基本理论出发,对现有的三种气动噪声数值计算方法进行介绍,分析这三种方法的适用性,并通过应用实例说明它们各自的求解过程和优缺点。由此可对气动噪声的预测提供一定的参考依据。  相似文献   

5.
输电塔结构的非定常抖振力与来流风速之间存在复杂的非线性关系,基于风洞试验得到的某1 000 k V格构式直线输电塔弹性模型的基底力以及参考高度处同步采集的风速时程,采用线性和高斯两种近似假定计算了非定常气动力系数并与试验值进行了比较;提出了包含结构气动阻尼效应在内的总气动导纳的概念,通过基底脉动力谱和来流脉动风速谱的比值对总气动导纳函数进行识别,并用基于频域相干函数对导纳函数的线性部分进行了估计。结果发现,风偏角线性近似所计算静气动力系数的偏差较高斯近似小;由于气动抖振力非定常性质明显,不考虑总气动导纳函数将高估输电塔模型的抖振响应;脉动风力与脉动风速间有较强的非线性关系,用线性导纳函数计算的抖振力谱将低估脉动风分量的影响。  相似文献   

6.
水下夹芯复合空腔结构声学特性计算方法研究   总被引:1,自引:1,他引:0       下载免费PDF全文
建立了水下夹芯复合空腔结构入射声波模型,运用刚性管中声波传播特性和声固耦合边界条件,提出了一种声学特性有限元计算方法。通过与钢制和橡胶中间层解析解,以及单层夹芯复合结构和夹芯舵结构传递矩阵法、试验结果比较,验证了计算方法对均质层的有效性。通过与经典文献周期空腔覆盖层结构空气背衬和水背衬条件下计算结果进行比较,本文计算方法与经典方法吻合较好,同时兼顾了结构整体弯曲振动对声学性能的影响。通过分析周期阵列边界条件对夹芯复合空腔结构的声学特性影响,补充验证了本文计算方法的可行性。  相似文献   

7.
采用声模拟理论预测非紧致结构与非定常流动相互作用诱发的气动噪声时,为考虑边界对声场的散射影响,需要应用非紧致格林函数。为此,发展了一种基于边界元思想的非紧致格林函数数值计算方法,该方法适用于任意外形结构,能直接计算非紧致格林函数及其偏导数。以二维圆柱边界为算例,采用理论解析方法推导了非紧致格林函数及其偏导数的正确表达式,并将数值计算方法结果与理论解析方法结果相比较,验证了数值方法的正确性。  相似文献   

8.
摘 要:在使用有限元进行声场的数值模拟中,存在着两个主要误差,一个是数值方法中常规的插值误差,另外一个是计算声学中所特有的耗散误差(dispersion error),后者则是影响声学模拟仿真置信度的最重要因素。产生耗散误差的本质原因是由于有限元的数值模型刚度“偏硬”造成的。为了控制耗散误差,最重要的是使数值模型更好的反映真实模型。本文采用了一种基于边光滑的有限元方法(ES-FEM)来对声场的时域和频域进行数值模拟研究。该方法只采用对复杂问题域适应性很强的三角形网格,通过引进基于边的广义梯度光滑技术,能够使得有限元系统得到适当的“软化”。关于时域和频域的算例表明了在使用同样网格的情况下,本方法在声学模拟中的精度都要比有限元模型的高。  相似文献   

9.
基于同步测压技术,以京沪高速铁路典型高架桥和CRH2列车为背景,研究风屏障对典型车桥组合状态下列车的风压分布和各面气动力分布特征的影响,以分析风屏障的气动影响机理,并从流体力学角度进行解释。研究结果表明:风屏障对上游列车气动特性影响较大,下游列车由于处于尾流中,受之影响较小;设置风屏障后,上游列车由于迎风面风压由正变负,使得该面的侧力与背风面相反,故使总体侧力减小,车顶平均风压显著减小,使得车顶升力约增大50%,背风面和车底风压变化较小;风屏障透风率及高度取值需根据具体环境进行优化,并需注意防风效果并不与减小平均风速等同。  相似文献   

10.
提出一种自适应方法计算声学边界元中的拟奇异积分,通过单元分级细分将总积分转移到子单元上以消除拟奇异性。在此方法基础上深入研究拟奇异性,进一步提出接近度的概念,其中临界接近度可作为拟奇异积分计算的理论依据,并可用于预估拟奇异性是否存在。此方法的积分精度可调控,且不受场点位置限制,相比于已有方法更加灵活高效。数值分析表明拟奇异性强弱由场点与单元的相对位置决定,单元上远离场点的区域拟奇异性很弱,无需处理。研究结果为处理边界元法中的拟奇异性问题提供了新的选择和参考。  相似文献   

11.
以斯特林发动机为研究对象,将斯特林发动机划分为6个控制容积,采用三阶节点分析法模拟了GPU-3斯特林发动机,得出其内部压力、温度、功率和效率等参数的动态变化规律。在此基础上对影响斯特林发动机工作腔容积与死容积的参数进行了优化分析,得到了发动机输出功达到最大时各参数的最优值。  相似文献   

12.
In this paper, we used the modified nodal analysis (MNA) method to obtain the cavity-mode equation for the segmentation method. In the experiment, the calculation result of MNA is more accurate than traditional double summation with discrete capacitors. The proposed approaches decrease computation and easily add discrete capacitors. The MNA and segmentation methods can be combined to conveniently calculate an irregularly shaped cavity by using computers. This approach can reduce the time required for deriving the impedance equation. The result can be used to build a mathematical model of the MNA method, which can suppress cavity-mode resonances within the power bus by using discrete capacitors. We used electromagnetic simulation software to verify these models.  相似文献   

13.
A stabilized conforming nodal integration scheme is implemented in the natural neighbour method in conjunction with non‐Sibsonian interpolation. In this approach, both the shape functions and the integration scheme are defined through use of first‐order Voronoi diagrams. The method illustrates improved performance and significant advantages over previous natural neighbour formulations. The method also shows substantial promise for problems with large deformations and for the computation of higher‐order gradients. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
A locking-free meshfree curved beam formulation based on the stabilized conforming nodal integration is presented. Motivated by the pure bending solutions of thin curved beam, a meshfree approximation is constructed to represent pure bending mode without producing parasitic shear and membrane deformations. Furthermore, to obtain the exact pure bending solution (bending exactness condition), the integration constraints corresponding to the Galerkin weak form are derived. A nodal integration with curvature smoothing stabilization that satisfies the integration constraints is proposed under the Galerkin weak form for shear deformable curved beam. Numerical examples demonstrate that the resulting meshfree formulation can exactly reproduce pure bending mode with arbitrary dicretizations, and the method is stable and free of shear and membrane locking. Computational efficiency and accuracy are achieved simultaneously in the proposed formulation  相似文献   

15.
A general formulation for developing reproducing kernel (RK) interpolation is presented. This is based on the coupling of a primitive function and an enrichment function. The primitive function introduces discrete Kronecker delta properties, while the enrichment function constitutes reproducing conditions. A necessary condition for obtaining a RK interpolation function is an orthogonality condition between the vector of enrichment functions and the vector of shifted monomial functions at the discrete points. A normalized kernel function with relative small support is employed as the primitive function. This approach does not employ a finite element shape function and therefore the interpolation function can be arbitrarily smooth. To maintain the convergence properties of the original RK approximation, a mixed interpolation is introduced. A rigorous error analysis is provided for the proposed method. Optimal order error estimates are shown for the meshfree interpolation in any Sobolev norms. Optimal order convergence is maintained when the proposed method is employed to solve one‐dimensional boundary value problems. Numerical experiments are done demonstrating the theoretical error estimates. The performance of the method is illustrated in several sample problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
17.
A computational inverse method is presented to determine the state parameters of Jones-Wilkins-Lee (JWL) equation of explosive detonation products based on cylinder test. In this method, the inverse problem of identifying the JWL parameters is formulated through minimizing the errors of the measured radial displacements on the cylinder surface and those computed by the forward solver. An available numerical model simulated by finite element method is built for the sake of obtaining results using the given JWL parameters. Because of the difference of coordinate systems between experiment and numerical model, it is necessary to conduct the transformation between the two coordinate systems. The sensitivity analysis method is adopted to evaluate the influence of the JWL parameters on the responses and find out the parameters those are suitable to be identified. In order to improve the computational efficiency, radial basis function approximate model is constructed to replace the time-consuming numerical model. In the process of constructing approximate model, the truncated singular value decomposition method is used to deal with the ill-condition of the model. At last, the intergeneration projection genetic algorithm is adopted to identify the parameters. The numerical results demonstrate that the proposed inverse method is potentially available to effectively identify the JWL parameters.  相似文献   

18.
In the extended finite element method (XFEM), errors are caused by parasitic terms in the approximation space of the blending elements at the edge of the enriched subdomain. A discontinuous Galerkin (DG) formulation is developed, which circumvents this source of error. A patch‐based version of the DG formulation is developed, which decomposes the domain into enriched and unenriched subdomains. Continuity between patches is enforced with an internal penalty method. An element‐based form is also developed, where each element is considered a patch. The patch‐based DG is shown to have similar accuracy to the element‐based DG for a given discretization but requires significantly fewer degrees of freedom. The method is applied to material interfaces, cracks and dislocation problems. For the dislocations, a contour integral form of the internal forces that only requires integration over the patch boundaries is developed. A previously developed assumed strain (AS) method is also developed further and compared with the DG method for weak discontinuities and linear elastic cracks. The DG method is shown to be significantly more accurate than the standard XFEM for a given element size and to converge optimally, even where the standard XFEM does not. The accuracy of the DG method is similar to that of the AS method but requires less application‐specific coding. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The present work addresses a multiscale framework for fast‐Fourier‐transform–based computational homogenization. The framework considers the scale bridging between microscopic and macroscopic scales. While the macroscopic problem is discretized with finite elements, the microscopic problems are solved by means of fast‐Fourier‐transforms (FFTs) on periodic representative volume elements (RVEs). In such multiscale scenario, the computation of the effective properties of the microstructure is crucial. While effective quantities in terms of stresses and deformations can be computed from surface integrals along the boundary of the RVE, the computation of the associated moduli is not straightforward. The key contribution of the present paper is the derivation and implementation of an algorithmically consistent macroscopic tangent operator which directly resembles the effective moduli of the microstructure. The macroscopic tangent is derived by means of the classical Lippmann‐Schwinger equation and can be computed from a simple system of linear equations. This is performed through an efficient FFT‐based approach along with a conjugate gradient solver. The viability and efficiency of the method is demonstrated for a number of two‐ and three‐dimensional boundary value problems incorporating linear and nonlinear elasticity as well as viscoelastic material response.  相似文献   

20.
Numerical stability by using certain time integration scheme is a critical issue for accurate simulation of discontinuous deformations of solids. To investigate the effects of the time integration schemes on the numerical stability of the numerical manifold method, the implicit time integration schemes, ie, the Newmark, the HHT‐α, and the WBZ‐α methods, and the explicit time integration algorithms, ie, the central difference, the Zhai's, and Chung‐Lee methods, are implemented. Their performance is examined by conducting transient response analysis of an elastic strip subjected to constant loading, impact analysis of an elastic rod with an initial velocity, and excavation analysis of jointed rock masses, respectively. Parametric studies using different time steps are conducted for different time integration algorithms, and the convergence efficiency of the open‐close iterations for the contact problems is also investigated. It is proved that the Hilber‐Hughes‐Taylor‐α (HHT‐α), Wood‐Bossak‐Zienkiewicz‐α (WBZ‐α), Zhai's, and Chung‐Lee methods are more attractive in solving discontinuous deformation problems involving nonlinear contacts. It is also found that the examined explicit algorithms showed higher computational efficiency compared to those implicit algorithms within acceptable computational accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号