首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Batch experiments were carried out for the sorption of methylene blue onto Paspalum notatum. The operating variables studied were initial dye concentration, initial solution pH, adsorbent dosage and contact time. Experimental equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherms by non-linear regression method. Six error functions was used to determine the optimum isotherm by non-linear regression method. The present study shows r2 as the best error function to determine the parameters involved in both two- and three-parameter isotherms. Langmuir isotherm was found to be the optimum isotherm for methylene blue onto P. notatum. The monolayer methylene blue sorption capacity of P. notatum was found to be 31 mg/g. The kinetics of methylene blue onto P. notatum was found to follow a pseudo second order kinetics. A Boyd plot confirms the external mass transfer as the rate-limiting step in the dye sorption process. The influence of initial dye concentration on the dye sorption process was represented in the form of dimensionless mass transfer numbers (Sh/Sc0.33) and was found to vary as C(0)-5x10(-6).  相似文献   

2.
In this work, sunflower (Helianthus annuus L.) seed hull (SSH), an agricultural waste, was evaluated for its ability to remove methyl violet (MV) from aqueous solutions. Sorption isotherm of MV onto the SSH was determined at 30 degrees C with the initial concentrations of MV in the range of 25-300 mg/L. The equilibrium data were analyzed using the Langmuir, Freundlich and Temkin isotherm models. The equilibrium process was described well by the Freundlich isotherm model. The maximum SSH sorption capacity was found to be 92.59 mg/L at 30 degrees C. The kinetic data were studied in terms of the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The pseudo-second-order model best described the sorption process. A single-stage batch-adsorber design of the adsorption of MV onto SSH was studied based on the Freundlich isotherm equation. The results indicated that sunflower seed hull was an attractive candidate for removing methyl violet from aqueous solution.  相似文献   

3.
The biosorption of a cationic dye, malachite green oxalate (MG) from aqueous solution onto an invasive marine alga Caulerpa racemosa var. cylindracea (CRC) was investigated at different temperatures (298, 308 and 318 K). The dye adsorption onto CRC was confirmed by FTIR analysis. Equilibrium data were analyzed using Freundlich, Langmuir and Dubinin-Radushkevich (DR) equations. All of the isotherm parameters were calculated. The Freundlich model gave a better conformity than Langmuir equation. The mean free energy values (E) from DR isotherm were also estimated. In order to clarify the sorption kinetic, the fit of pseudo-first-order kinetic model, second-order kinetic model and intraparticle diffusion model were investigated. It was obtained that the biosorption process followed the pseudo-second-order rate kinetics. From thermodynamic studies the free energy changes were found to be -7.078, -9.848 and -10.864 kJ mol(-1) for 298, 308 and 318 K, respectively. This implied the spontaneous nature of biosorption and the type of adsorption as physisorption. Activation energy value for MG sorption (E(a)) was found to be 37.14 kJ mol(-1). It could be also derived that this result supported physisorption as a type of adsorption.  相似文献   

4.
Pseudo second order kinetic expressions of Ho, Sobkowsk and Czerwinski, Blanachard et al. and Ritchie were fitted to the experimental kinetic data of malachite green onto activated carbon by non-linear and linear method. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo second order model were the same. Non-linear regression analysis showed that both Blanachard et al. and Ho have similar ideas on the pseudo second order model but with different assumptions. The best fit of experimental data in Ho's pseudo second order expression by linear and non-linear regression method showed that Ho pseudo second order model was a better kinetic expression when compared to other pseudo second order kinetic expressions. The amount of dye adsorbed at equilibrium, q(e), was predicted from Ho pseudo second order expression and were fitted to the Langmuir, Freundlich and Redlich Peterson expressions by both linear and non-linear method to obtain the pseudo isotherms. The best fitting pseudo isotherm was found to be the Langmuir and Redlich Peterson isotherm. Redlich Peterson is a special case of Langmuir when the constant g equals unity.  相似文献   

5.
The sorption of SPANDS from aqueous solution onto the macroporous polystyrene anion exchangers of weakly basic Amberlyst A-21 and strongly basic Amberlyst A-29 in a batch method was studied. The effect of initial dye concentration and phase contact time was considered to evaluate the sorption capacity of anion exchangers. Equilibrium data were attempted by various adsorption isotherms including the Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models. A comparison of kinetic models applied to the adsorption rate constants and equilibrium sorption capacities was made for the Lagergren first-order, pseudo second-order and Morris–Weber intraparticle diffusion kinetic models. The results showed that the adsorption isotherm is in the good agreement with the Langmuir equation and that the adsorption kinetics of SPADNS on both anion exchangers can be best described by the pseudo second-order model.  相似文献   

6.
Sorption of malachite green on chitosan bead   总被引:2,自引:1,他引:1  
Chitosan bead was synthesized for the removal of a cationic dye malachite green (MG) from aqueous solution. The effects of temperature (303, 313 and 323 K), pH of the solution (2-11) on MG removal was investigated. Preliminary kinetic experiment was carried out up to 480 min. The sorption equilibrium was reached within 5 h (300 min). In order to determine the adsorption capacity, the sorption data were analyzed using linear form of Langmuir and Freundlich equation. Langmuir equation showed higher conformity than Freundlich equation. Ninety-nine percent removal of MG was reached at the optimum pH value of 8. From kinetic experiments, it was obtained that sorption process followed the pseudo-second-order kinetic model. This study showed that chitosan beads can be excellent adsorbents at high pH values. Activation energy value for sorption process was found to be 85.6 kJ mol(-1). This indicates that sorption process can be assumed as chemical process. Due to negative values of Gibbs free energy, sorption process can be considered as a spontaneous. In order to determine the interactions between MG and chitosan bead, FTIR analysis was also conducted.  相似文献   

7.
Oil palm trunk fibre (OPTF)--an agricultural solid waste--was used as low-cost adsorbent to remove malachite green (MG) from aqueous solutions. The operating variables studied were contact time, initial dye concentration, and solution pH. Equilibrium adsorption data were analyzed by three isotherms, namely the Freundlich isotherm, the Langmuir isotherm, and the multilayer adsorption isotherm. The best fit to the data was obtained with the multilayer adsorption. The monolayer adsorption capacity of OPTF was found to be 149.35 mg/g at 30 degrees C. Adsorption kinetic data were modeled using the Lagergren pseudo-first-order, Ho's pseudo-second-order and Elovich models. It was found that the Lagergren's model could be used for the prediction of the system's kinetics. The overall rate of dye uptake was found to be controlled by external mass transfer at the beginning of adsorption, then for initial MG concentrations of 25, 50, 100, 150, and 300 mg/L the rate-control changed to intraparticle diffusion at a later stage, but for initial MG concentrations 200 and 250 mg/L no evidence was found of intraparticle diffusion at any period of adsorption. It was found that with increasing the initial concentration of MG, the pore-diffusion coefficient increased while the film-diffusion coefficient decreased.  相似文献   

8.
In this work, the adsorption of malachite green (MG) was studied on activated carbon prepared from bamboo by chemical activation with K(2)CO(3) and physical activation with CO(2) (BAC). Adsorption studies were conducted in the range of 25-300 mg/L initial MG concentration and at temperature of 30 degrees C. The experimental data were analyzed by the Freundlich isotherm, the Langmuir isotherm, and the multilayer adsorption isotherm. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 263.58 mg/g. The rates of adsorption were found to confirm to pseudo-second-order kinetics with good correlation and the overall rate of dye uptake was found to be controlled by pore diffusion throughout the entire adsorption period. The results indicate that the BAC could be used to effectively adsorb MG from aqueous solutions.  相似文献   

9.
In this study, the biosorption of nickel(II) ions on Enteromorpha prolifera, a green algae, was investigated in a batch system. The single and combined effects of operating parameters such as initial pH, temperature, initial metal ion concentration and biosorbent concentration on the biosorption of nickel(II) ions on E. prolifera were analyzed using response surface methodology (RSM). The optimum biosorption conditions were determined as initial pH 4.3, temperature 27 degrees C, biosorbent concentration 1.2 g/L and initial nickel(II) ion concentration 100 mg/L. At optimum biosorption conditions, the biosorption capacity of E. prolifera for nickel(II) ions was found to be 36.8 mg/g after 120 min biosorption. The Langmuir and Freundlich isotherm models were applied to the equilibrium data and defined very well both isotherm models. The monolayer coverage capacity of E. prolifera for nickel(II) ions was found as 65.7 mg/g. In order to examine the rate limiting step of nickel(II) biosorption, such as the mass transfer and chemical reaction kinetics, the intraparticle diffusion model, external diffusion model and the pseudo second order kinetic model were tested with the experimental data. It was found that for both contributes to the actual biosorption process. The pseudo second order kinetic model described the nickel(II) biosorption process with a good fitting.  相似文献   

10.
Dynamic batch experiments were carried out for the biosorption of basic yellow dye on to the green macroalgae Caulerpa scalpelliformis. The factors affecting the sorption process such as the initial concentration of the dye and pH of the solution, the adsorbent dosage and the time of contact were studied. The sorption kinetics followed pseudo-second order kinetic model. The Caulerpa species exhibited a maximum uptake of 27 mg of dye per gram of seaweed. The Boyd's plot confirmed the external mass transfer as the rate-limiting step. The average effective diffusion coefficient was found to be 2.47 x 10(-4)cm(2)/s. Sorption equilibrium studies demonstrated that the biosorption followed Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as enthalpy of sorption DeltaH degrees , free energy change DeltaG degrees and entropy DeltaS degrees were estimated. The negative value of DeltaH degrees and negative values of DeltaG degrees show the sorption process is exothermic and spontaneous. The negative value of entropy DeltaS degrees shows the decreased randomness at the solid-liquid interface during the sorption of dyes onto green seaweed.  相似文献   

11.
12.
In this work, the potential feasibility of rice straw-derived char (RSC) for removal of C.I. Basic Green 4 (malachite green (MG)), a cationic dye from aqueous solution was investigated. The isotherm parameters were estimated by non-linear regression analysis. The equilibrium process was described well by the Langmuir isotherm model. The maximum RSC sorption capacity was found to be 148.74 mg/L at 30 degrees C. The kinetics of MG sorption on RSC followed the Lagergren's pseudo-first-order model and the overall rate of dye uptake was found to be controlled by external mass transfer at the beginning of adsorption, while intraparticle diffusion controlled the overall rate of adsorption at a later stage. The results indicated that RSC was an attractive adsorbent for removing basic dye from aqueous solutions.  相似文献   

13.
The adsorption of Congo Red onto bentonite in a batch adsorber has been studied. Four kinetic models, the pseudo first- and second-order equations, the Elovich equation and the intraparticle diffusion equation, were selected to follow the adsorption process. Kinetic parameters; rate constants, equilibrium adsorption capacities and correlation coefficients, for each kinetic equation were calculated and discussed. It was shown that the adsorption of Congo Red onto bentonite could be described by the pseudo second-order equation. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin equations. Adsorption of Congo Red onto bentonite followed the Langmuir isotherm. A single stage batch adsorber was designed for different adsorbent mass/treated effluent volume ratios using the Langmuir isotherm.  相似文献   

14.
In this work, the adsorption of malachite green (MG) on rattan sawdust (RSD) was studied at 30 degrees C. The results indicated that RSD can be used as a low-cost adsorbent for the removal of MG dye from aqueous solutions. Equilibrium data were analyzed by two isotherms, namely the Freundlich isotherm and the Langmuir isotherm. The best fit to the data was obtained with the Langmuir isotherm. The monolayer adsorption capacity of RSD was found to be 62.71 mg/g. The adsorption kinetics can be predicted by the pseudo-first-order model. The mechanism of adsorption was also studied. It was found that for a short time period the rate of adsorption is controlled by film diffusion. However, at longer adsorption times, pore-diffusion controls the rate of adsorption. The amount adsorbed on the outer surface was estimated from the time where film-diffusion stops controlling the adsorption rate.  相似文献   

15.
16.
Natural polymeric materials are gaining interest for application as adsorbents in wastewater treatment due to their biodegradable and non-toxic nature. In this study, a biopolymer, poly-gamma-glutamic acid (gamma-PGA) derived from bacterial sources (Bacillus species) was evaluated for its efficiency in removing basic dyes from aqueous solution. Sorption studies under batch mode were conducted using C.I. Basic blue 9 (BB9) and C.I. Basic green 4 (BG4) as test dyes. Equilibrium process conformed well with the Redlich-Peterson isotherm equation and the monolayer sorption capacity obtained from the Langmuir model was 352.76 and 293.32mg/g for BB9 and BG4 dyes, respectively. The kinetic studies of dye sorption on gamma-PGA gave high coefficients of determination (>0.98) for a pseudo second-order equation. An ion-exchange model, which assumes adsorption as a chemical phenomenon, was also found to fit the kinetic data precisely. The dye sorption largely depended on the initial pH of the solution with maximum uptake occurring at pH above 5. About 98% of the dye adsorbed on gamma-PGA could be recovered at pH 1, which facilitates the reuse of spent gamma-PGA.  相似文献   

17.
The biosorption of Acid Red 274 (AR 274) dye on Enteromorpha prolifera, a green algae grown on Mersin costs of the Mediterranean, Turkey, was studied as a function of initial pH, temperature, initial dye and biosorbent concentration. The experiments were conducted in a batch manner. The Langmuir and Freundlich isotherms were used for modelling the biosorption equilibrium. At optimum temperature 30 degrees C and initial pH 2.0-3.0, the Langmuir isotherm fits best to the experimental equilibrium data with a maximum monolayer coverage of 244 mg/g. The equilibrium AR 274 concentration of the exit stream of a single batch was also obtained by using the experimental equilibrium curve and operating line graphically. The pseudosecond-order kinetic model and Weber-Morris model were applied to the experimental data and it was found that both the surface adsorption as well as intraparticle diffusion contribute to the actual adsorption process. The biosorption process follows a pseudosecond-order kinetics and activation energy was determined as -4.85 kJ/mol. Thermodynamic studies showed that the biosorption of AR 274 on E. prolifera is exothermic and spontaneous in nature.  相似文献   

18.
In this study, the biosorption of Acid Blue 290 and Acid Blue 324 on Spirogyra rhizopus, a green algae growing on fresh water, was studied with respect to initial pH, temperature, initial dye concentration and biosorbent concentration. The optimum initial pH and temperature values for AB 290 and AB 324 biosorption were found to be 2.0, 30 degrees C and 3.0, 25 degrees C, respectively. It was observed that the adsorbed AB 290 and AB 324 amounts increased with increasing the initial dye concentration up to 1500 and 750 mg/L, respectively. The Langmuir, Freundlich, Redlich-Peterson and Koble-Corrigan isotherm models were applied to the experimental equilibrium data and the isotherm constants were determined by using Polymath 4.1 software. The monolayer coverage capacities of S. rhizopus for AB 290 and AB 324 dyes were found as 1356.6 mg/g and 367.0 mg/g, respectively. The intraparticle diffusion model and the pseudo-second order kinetic model were applied to the experimental data in order to describe the removal mechanism of these acidic dyes by S. rhizopus. The pseudo-second order kinetic model described very well the biosorption kinetics of AB 290 and AB 324 dyes. Thermodynamic studies showed that the biosorption of AB 290 and AB 324 on S. rhizopus was exothermic in nature.  相似文献   

19.
Batch adsorption studies were carried out for the sorption of C.I. Reactive Black 5, a reactive dye, onto high lime fly ash, obtained from Soma Thermal Power Plant (Turkey), to be low cost adsorbent. The effect of various experimental parameters such as contact time, adsorbent dose and initial dye concentration were investigated. Determination of the adsorption equilibrium concentrations was determined by UV-vis spectrophotometry analytical method. Equilibrium data were fitted to the Freundlich and Langmuir isotherm equations and the equilibrium data were found to be well represented by the Freundlich isotherm equation. The adsorption kinetics of C.I. Reactive Black 5 onto high lime fly ash were also studied to characterize of the surface complexation reaction. A pseudo-second-order mechanism has been developed to predict the rate constant of the adsorption, the equilibrium capacity and initial adsorption rate with the effect of initial concentration. A single-stage batch adsorber design of the adsorption of C.I. Reactive Black 5 onto high lime fly ash has been studied based on the Freundlich isotherm equation.  相似文献   

20.
The adsorption behavior of crystal violet (CV(+)) from aqueous solution onto raw (RB) and manganese oxide-modified (MMB) bentonite samples was investigated as a function of parameters such as initial CV(+) concentration, contact time and temperature. The Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption models were applied to describe the equilibrium isotherms. The Langmuir monolayer adsorption capacities of RB and MMB were estimated as 0.32 and 1.12 mmol/g, respectively. The mean adsorption energy derived from D-R isotherm for MMB showed that the type of adsorption of dye molecules on this material may be defined as chemical adsorption. The adsorption rate was fast and more than half of the adsorbed-CV(+) was removed in the first 55 min for RB and 5 min for MMB at the room temperature. The pseudo-first-order, pseudo-second-order kinetic and the intraparticle diffusion models were used to describe the kinetic data and rate constants were evaluated. The thermodynamic parameters such as DeltaH, DeltaS and DeltaG were found 117.41 kJ/mol, 41.50 J/(molK), -5.07 kJ/mol (RB) and 21.19 kJ/mol 98.34 J/(molK), -7.84 kJ/mol (MMB) at 295.15 K, respectively. The quite high adsorption capacity and high adsorption rate of MMB will provide an important advantage for using of this material in basic dye solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号