首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
CoFe2O4 thin films of different thicknesses were grown on SrTiO3 substrates. The X-ray diffraction analysis and atomic force microscopy indicated both epitaxy and a granular microstructure. We studied the magnetic properties of these films as a function of oxygen post-annealing and film thickness. All as-deposited films exhibited similar magnetic properties with saturated magnetization (Ms) of approximately 50% of the bulk Ms, (80 Am2 kg− 1). After the post-annealing the Ms changes as a consequence of crystallographic restructuring of the film. Cation ordering in 100 nm thick films reduces Ms, whereas re-oxidation increases Ms for thinner films. 13 nm films, annealed for 1 h, reach the bulk Ms. For even thinner films the quantum-size effect reduces Ms. For a synthesis of ≥ 30 nm films an annealing cycle after deposition of every 15 nm layer is recommended.  相似文献   

2.
About 1.05 µm-thick Pb(Zr0.5Ti0.5)O3 (PZT) films containing Fe3O4 nanoparticles were deposited on LaNiO3-coated silicon substrates through a sol-gel technique. Fe3O4 nanoparticles were effectively dispersed into PZT solution under the involvement of polyvinylpyrrolidone. X-ray diffraction confirmed the coexistence of PZT and Fe3O4 phases without other impurity phases. Scanning electron microscope revealed that the thick composite films possess well-defined and crack-free microstructure. The composite films exhibit good ferroelectric and ferromagnetic properties at room temperature. An obvious magnetodielectric effect has been demonstrated in the Pb(Zr0.5Ti0.5)O3/Fe3O4 composite films. Magnetic field induced change in ferroelectric polarization loop may support the possible magnetoelectric coupling between PZT and Fe3O4 phases.  相似文献   

3.
The Cu2O particles or clusters dispersed mesoporous SiO2 composite films were prepared by a new method: First the matrix SiO2 films were prepared by sol-gel process combined with the dip-coating technique, and then they were soaked in Cu(NO3)2 solutions followed by γ-ray irradiation at room temperature and in ambient pressure. Thus prepared Cu2O/SiO2 composite films were examined by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and optical absorption spectroscopy. Compared with the pure Cu2O nanoparticles, an obvious blue shift existed in the obtained Cu2O/SiO2 composite films.  相似文献   

4.
RuO2-CeO2 composite thin films are deposited on various Si substrates by a radiofrequency magnetron sputtering technique. Compacted polycrystalline pellets of the nanostructured CeO2-RuO2 composite system are used as standard samples for comparative electrical analyses. All films and composite samples are analyzed by X-ray diffraction and transmission electron microscopy. Electrical measurements of radiofrequency sputtering of thin films are performed as a function of the RuO2 fraction and of the temperature (between 25 and 400 °C). A nonlinear variation in the electrical conductivity of the RuO2-CeO2 composite thin films as a function of the RuO2 volume fraction (Φ) is observed and discussed. It is interpreted in terms of a power law (in (Φ − Φc)m ), where m and Φc are parameters characteristic of the distribution of the conducting phase in a composite medium.  相似文献   

5.
The optical and electrical characteristics of SnO2 composite films with various contents (0, 0.05, 0.1, 0.2, and 0.3 at.%) of Pt nanoparticles were evaluated. The Pt nanoparticles were synthesized by a methanol reduction method and their average size was controlled to 3 nm using poly(N-vinyl-2-pyrrolidone) as a protecting agent. The lowest resistivity of 2.031 × 10− 2 Ω cm was obtained in the SnO2 film containing 0.2 at.% Pt nanoparticles after annealing at 700 °C while its average transmittance in the visible region was 85.24%. The enhanced electrical properties were attributed to the increase of the carrier concentration and crystallinity of the films due to donation from Pt nanoparticles as well as the increased annealing temperature. Meanwhile, the slight degradation of the transmittance was due to scattering from the introduction of Pt nanoparticles and the increased crystallite size due to the increase of the annealing temperature to 700 °C. Well-defined 20-μm wide direct-patterned composite SnO2 films containing Pt nanoparticles were formed by a simple photochemical metal-organic deposition process involving a photosensitive starting precursor, UV exposure, and removal of the unpatterned area by rinsing with solvent. Based on the results of this study, we suggest that direct-patternable SnO2 films with Pt nanoparticles can be easily applied to transparent electrodes in electrical devices without requiring an expensive and toxic process such as dry etching.  相似文献   

6.
CoFe2O4/Pb(Zr0.53Ti0.47)O3 (CFO/PZT) multiferroic composite thick films with different CFO mass fractions have been prepared onto Pt/Ti/SiO2/Si substrate by a hybrid sol–gel process and spin coating technique. Polyvinylpyrrolidone (PVP) was employed to be an assistance to the sol–gel solution for enhancing the film thickness and promising a crack-free film surface. After annealing at 650 °C in air for 1 h, phase structure, microstructure, magnetic and ferroelectric properties as well as leakage current of multiferroic thick films were investigated. X-ray diffraction indicated a deeply buried distribution of CFO particles in the PZT matrix. Scanning electronic microscopes showed crack-free surfaces and a decreasing film thickness from 7.2 μm to 6.2 μm with increasing CFO content. Furthermore, the saturated magnetization and remanent magnetization were also hence increased. In addition, mass fraction of CFO in PZT matrix was also estimated from 0.36% to 4.58% according to the relationship between M s and magnetic content. Ferroelectric hysteresis loops revealed saturated polarization (P s) and remanent polarization (P r) were diluted by CFO till its mass fraction rising to 1.8%. After that, polarization was increased with further increasing CFO content. Enhanced leakage was demonstrated to be partially contributed to them. A critical content of 1.8% was hence confirmed, where ferroelectric and magnetic properties can be balanced, indicating a possible stress-transferred magnetoelectric coupling effect in this composite.  相似文献   

7.
Reversible transformation of silver oxide and metallic nanoparticles inside a relatively porous silica film has been established. Annealing of Ag-doped films in oxidizing (air) atmosphere at 450 °C yielded colorless films containing AgOx. These films were turned yellow when heated in H2-N2 (reducing atmosphere) due to the formation of Ag nanoparticles. This yellow coloration (due to nano Ag0) and bleaching (conversion of Ag0 → Ag+) are reversible. Optical and photoluminescence spectra are well consistent with this coloration and bleaching. The soaking test of the air-annealed film in Na2S2O3 solution supports the presence of Ag+. Grazing incidence X-ray diffraction and transmission electron microscopy studies reveal the formation of Ag-oxides and Ag nanoparticles in the oxidized and reduced films, respectively.  相似文献   

8.
The influence of the molar ratio of Al2O3 to Y2O3 (i.e. MAl2O3/MY2O3) on sintering densification, microstructure and the mechanical properties of a SiC–Al2O3–Y2O3 ceramic composite were studied. It was shown that the optimal value of MAl2O3/MY2O3 was 3/2, not 5/3, which is customarily considered the optimal molar ratio for the formation of YAG (Y3Al5O12) phase. When MAl2O3/MY2O3 is 5/3, materials existed in two phases of YAG and very little YAM phases. The sintering mechanism of the solid phase occurred at 1850 °C. When MAl2O3/MY2O3 was 3/2, materials existed in the two phases YAG (Y3Al5O12) and YAM (Y4Al2O9). The formation of the low melting point eutectic liquid phase (YAG + YAM) increased sintering densification. Flexure strength, hardness and relative density were all higher.  相似文献   

9.
M. Sultan 《Materials Letters》2009,63(21):1764-1766
Cu-ferrite films were deposited on glass substrates by RF-magnetron sputtering in pure Ar and mixture of (Ar + O2) environment. The XRD studies of the as-deposited films indicate nanocrystalline cubic spinel structure. The observed increase in the intensity of (400) line at the expense of (220) line with increase in O2 content is ascribed to the change in distribution of Cu and Fe-ions among tetrahedral A-site and octahedral B-sites. The highest saturation magnetization (MS) of 264 emu/cm3 (in-plane) and 188 emu/cm3 (out of-plane) was obtained for the as-deposited films in pure Ar. The high deposition rate in reducing atmosphere leads to the formation of Cu+ ions which prefer occupation of the A-site in the spinel structure displacing Fe3+ cations to occupy the B-sites giving rise to the change in cation distribution among A and B-sites and consequently leading to high value of MS. The decrease in MS value with increase in oxygen content is ascribed to the decrease in film growth rate and Cu+ concentration which allow the cations to take up their preferable sites. The observed change in the film properties with environment is due to the presence of multivalent copper and iron ions with differing site preferences.  相似文献   

10.
Anex situ process has been developed to produce thin superconducting Tl2Ba2CaCu2O8 films. The properties of films grown on different substrates using different annealing regimes were studied. Critical temperatures of 103–107 K were measured on films prepared in a broad range of annealing temperatures on SrTiO3, LaAlO3, and Y-ZrO2 substrates. A critical current density,J c, of 2×106 A/cm2 at 77 K was measured on LaAlO3. Film morphology was studied by SEM, AFM, and STM.  相似文献   

11.
Using the transport and magnetization measurements, the influence of neutron irradiation at a fluence of 5 × 1017 n cm−2 on (B0.65C0.35)Ba1.4Sr0.6Ca2Cu3O z has been investigated. The neutron irradiation was found to decrease critical temperature and transport critical current density, increase the residual and normal state resistivity, and improve the intragranular critical current density with 1.6 × 105 A/cm2 (at 77.3 K and in the applied field up to 160 kA m) and ΔM irrM nonirr ratio (up to factor of 3) at highest field used for investigation. The field dependence of this ratio, which is below the unity at very low field but higher than 1 at high fields, correlated with the shape of the hysteretic loops as well as with the change of the transport parameters after irradiation suggests the role of the irradiation-induced effects on the grain edges. We discuss these effects in the framework of the Bean-Livingstone surface barriers and geometrical barriers.  相似文献   

12.
In this paper, the TiO2/HS-CH2-COOH/Cu3Se2 composite film photoanodes were fabricated on conducting glass plates. Cu3Se2 nanoparticles were used as the sensitizer and the bi-functional modifier HS-CH2-COOH was used at the interface between Cu3Se2 and TiO2 films to improve the properties of the film photoanode. The characterization results show that the sol-gel prepared anatase TiO2 film has a compact and uniform surface, while the tetragonal Cu3Se2 film has a coarse surface which is made up of uniform elongated particles. The photoelectrochemical experimental results indicate that the TiO2/HS-CH2-COOH/Cu3Se2 composite film photoanodes have a good photovoltaic property.  相似文献   

13.
The effects of the nitric acid (HNO3) treatment of TiO2 nanoparticles on the photovoltaic properties of the dye-sensitized solar cell (DSSC) were investigated. The HNO3 treatment enhanced the dispersion of TiO2 particles, increased the surface area and porosity of the sintered TiO2 films, increased the relative proportion of the Ti3+ state in the Ti 2p X-ray photoelectron spectroscopy spectrum, significantly increased the amount of adsorbed dye molecules on the TiO2 electrode, and reduced the charge-transfer resistance at the TiO2/dye/electrolyte interface. The short circuit photocurrent density (Isc) was increased due to the increased amount of adsorbed dye molecules and the reduced charge-transfer resistance. The HNO3 pre-treatment of TiO2 particles improved the overall conversion efficiency of the DSSC by about 14%.  相似文献   

14.
郭韵恬  王汉青 《材料导报》2018,32(24):4357-4362
水果和菌类均为货架期较短的商品,二者皆易因呼吸作用与微生物感染导致失水与腐坏。本工作首次报道了将稀土镧掺杂纳米TiO2(La3+-TiO2)粒子与PVA共混,采用溶液浇铸法制备了La3+-TiO2复合包装薄膜,并将其用于草莓和姬松茸保鲜的探索研究。XRD、SEM和LPSA表征显示,稀土镧的掺杂引起了纳米TiO2晶格的畸变,其粒径变小、表面能增大,掺杂后的纳米TiO2在PVA基体中的分散性得到提高。透湿和透氧率检测结果表明,La3+-TiO2的加入有利于复合薄膜阻隔性能的增加,当La3+-TiO2质量分数为1.6%时,透湿率降低45.9%,透氧率降低38.0%,复合薄膜阻隔性能最佳。抗菌率检测结果显示,稀土镧的掺杂拓宽了TiO2对光谱的利用范围,复合包装薄膜在自然光下对大肠杆菌和金黄葡萄球菌的杀灭率分别达到84.1%和91.8%。保鲜实验结果表明,复合包装薄膜因其优良的阻隔性和抗菌性,有效抑制了草莓贮存过程中的果实腐坏和质量损失,常温下将草莓的保质期从5 d延长至10 d左右;同时复合薄膜可减缓姬松茸贮藏过程中的自溶和褐变等现象,常温下将姬松茸的保质期从2 d延长至4 d左右,其包装保鲜效果良好。  相似文献   

15.
Organic-inorganic nanocomposites are gaining importance in the recent times as polymer electrolyte membranes. In the present work, composites were prepared by combining nano sized Co3O4 and poly(vinyledene fluoride) (PVDF), using spin coating technique. The surface of the PVDF/Co3O4 system characterized through field emission scanning electron microscopy (FESEM) revealed a porous structure of the films. The nanoparticles tend to aggregate on the surface and inside the pores, leading to a decrease in the porosity with an increase in Co3O4 content. Co3O4 nanoparticles prohibit crystallization of the polymer. Differential scanning calorimetry (DSC) studies revealed a decrease in crystallinity of PVDF/Co3O4 system with an increase in the oxide content. Magnetic property studies of the composite films revealed that with an increase in Co3O4 content, the saturation magnetization values of the nanocomposites increased linearly, showing successful incorporation of the nanoparticles in the polymer matrix. Further, ionic conductivity of the composite films was evaluated from electrochemical impedance spectroscopy. Addition of Co3O4 nanoparticles enhanced the conductivity of PVDF/Co3O4 system.  相似文献   

16.
The present paper describes the utilization of polypyrrole and the composite of polypyrrole doped with nickel hydroxide modified electrodes toward the catalytic oxidation of ascorbate. Films were potentiostatically deposited onto a glassy carbon surface and Fluor-doped tin oxide glass for different times. The physical characterization was performed using the low angle X-ray diffraction technique. Furthermore, the films were electrochemically characterized using cyclic voltammetry. The X-ray diffraction results show the existence of different polymorphic phases of nickel hydroxide in the polymer matrix, and the β-Ni(OH)2 phase appears to be dominant. The cyclic voltammetry profile in KOH solution shows the presence of two redox peaks that are related to the NiII/NiIII and NiIII/NiII couples, at approximately 0.5 and 0.35 V, respectively. The reversible electro-oxidation of ascorbate was observed on the surface of the polypyrrole and composite films. The analytical curves obtained using voltammetric techniques show a linear relationship between the faradaic current and the increase of the ascorbic acid concentration. The sensitivity of these films, which is obtained from the slope of the analytical curves, shows that the composite film is more electroactive than the polypyrrole film: 133.4 mA L mol− 1 cm− 2 and 83.8 mA L mol− 1 cm− 2, respectively. The rate constants of the catalytic ascorbate electro-oxidation were also reported, where the mean values were found to be 217.74 M− 1 s− 1 and 54.37 M− 1 s− 1, for the composite and polypyrrole films, respectively. The low cost of polypyrrole doped with Ni(OH)2 composite electrodes presents a more selective and high sensitivity to determine ascorbic acid concentration.  相似文献   

17.
X.L. Zhong  B. Li  J.B. Wang  M. Liao  H. Liao  Y.C. Zhou   《Materials Letters》2008,62(17-18):2891-2893
Mn-doped Bi3.15Nd0.85Ti3O12 (BNTM) thin films were fabricated on Pt/Ti/SiO2/Si(100) substrates by a chemical solution deposition technique and annealed at different temperatures from 650 to 800 °C. The structures of the films were analyzed using X-ray diffraction, which showed that the BNTM films exhibit polycrystalline structures and random orientations. The surface morphologies of the samples were investigated using scanning electron microscopy. The average grain size of the films increases with increasing annealing temperature. Electrical properties such as remanent polarization (2Pr) are quite dependent on the annealing temperature of BNTM films. It is found that the film annealed at 750 °C exhibits excellent ferroelectricity with a remanent polarization of 2Pr = 89.3 μC/cm2 and a coercive field of Ec = 99.2 kV/cm respectively.  相似文献   

18.
Using the transport and magnetization measurements, the influence of neutron irradiation at a fluence of 5 × 1017 n cm−2 on (B0.65C0.35)Ba1.4Sr0.6Ca2Cu3O z has been investigated. The neutron irradiation was found to decrease critical temperature and transport critical current density, increase the residual and normal state resistivity, and improve the intragranular critical current density with 1.6 × 105 A/cm2 (at 77.3 K and in the applied field up to 160 kA m) and ΔM irrM nonirr ratio (up to factor of 3) at highest field used for investigation. The field dependence of this ratio, which is below the unity at very low field but higher than 1 at high fields, correlated with the shape of the hysteretic loops as well as with the change of the transport parameters after irradiation suggests the role of the irradiation-induced effects on the grain edges. We discuss these effects in the framework of the Bean-Livingstone surface barriers and geometrical barriers.  相似文献   

19.
SnO2-TiO2 composite thin films were fabricated on soda-lime glass with sol-gel technology. By measuring the contact angle of the film surface and the degradation of methyl orange, we studied the influence of SnO2 doping concentration, heat-treatment temperature and film thickness on the super-hydrophilicity and photocatalytic activity of the composite films. The results indicate that the doping of SnO2 into TiO2 can improve their hydrophilicity and photocatalytic activity, and the composite film with 1-5 mol% SnO2 and heat-treated at 450°C is of super-hydrophilicity. The optimal SnO2 concentration for the photocatalytic activity is 10 mol% and larger film thickness is helpful to reduce the contact angle of the composite films.  相似文献   

20.
Thin films of CaWO4 and SrWO4 were prepared on glass substrates by spray pyrolysis. The effects of preparation conditions and monovalent, bivalent and trivalent cation doping on cathodoluminescence (CL) properties of the films were studied. Polycrystalline CaWO4 and SrWO4 films formed a scheelite structure after being annealed above 300°C. They exhibited analogous cathodoluminescence consisting of a blue emission band at 447 nm and a blue-green emission band at 487 nm. The blue and blue-green emission intensities increased with substrate and annealing temperature. Annealing atmosphere and doping with Ag+, Pb2+ and La3+ did not influence the characteristics of the blue and blue-green emissions, whereas Eu3+ did. The results indicated both the blue and blue-green emissions originated from the WO42− molecular complex. The luminance and efficiency for CaWO4 film were 150 cd/m2 and 0.7 lm/W at 5 kV and 57 μA/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号