首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 437 毫秒
1.
长桁-翼肋连接对复合材料单加筋板压缩性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用试验和有限元方法研究了复合材料含翼肋单加筋板试验件的压缩性能,试验件包括带有长桁-翼肋连接和不含长桁-翼肋连接2种类型。试验和数值计算研究结果表明:与不含长桁-翼肋连接的试验件相比,带有长桁-翼肋连接的试验件具有较高的刚度和较高的临界屈曲失稳载荷,在后屈曲承载过程中具有较小的形变和较小的最终破坏载荷。试验件的最终破坏模式总是长桁与蒙皮间的界面脱粘,这表明长桁-翼肋连接对加筋板试验件的最终破坏模式无影响。在复合材料翼面结构设计中,需要综合考虑长桁-翼肋连接对加筋板初始临界失稳载荷、后屈曲变形和结构承载能力等方面的影响。  相似文献   

2.
研究了复合材料加筋板翼面结构稳定性问题,分析了加筋板在压缩和剪切等载荷作用下的稳定性安全裕度。利用计算复合材料加筋板屈曲及后屈曲承载能力的方法,验证复杂受载情况下结构的稳定性。验证对象是一个优化后的满足强度、刚度和工艺制造要求的复合材料机翼。该机翼在各种载荷工况下的内力分布情况由MSC.NASTRAN分析得到,通过本文提出的方法得到每块蒙皮的稳定性承载能力。然后给出复合材料层合板在复杂载荷下的屈曲及后屈曲安全裕度的计算准则,验证优化后的机翼加筋板是否满足稳定性设计要求。该方法可作为约束集成到结构优化系统平台中。  相似文献   

3.
成型工艺对复合材料帽型加筋板轴压特性的影响   总被引:1,自引:0,他引:1  
对受到边界约束的不同工艺成型复合材料帽型加筋板进行轴压实验,研究二次胶接和共固化工艺对复合材料帽型加筋板压缩稳定性与承载能力的影响,同时分析蒙皮厚度及填充泡沫对加筋板轴压特性的影响。实验使用应变计监测加筋板局部失稳特性,并记录声响和断面观测以分析结构破坏机理。结果表明:蒙皮厚度显著影响结构压缩性能;聚甲基丙烯酰亚胺(PMI)填充泡沫能小幅度提高结构失稳载荷,但对结构破坏载荷无显著影响;相比二次胶接加筋板,共固化加筋板失稳载荷和破坏载荷均降低约18%;共固化加筋板损伤出现较早,且破坏是由分层引起,而二次胶接加筋板主要是脱粘破坏。  相似文献   

4.
复合材料帽型加筋板轴压试验及承载能力预测   总被引:3,自引:0,他引:3       下载免费PDF全文
随着复合材料的广泛使用,复合材料帽型加筋板在飞机结构上的使用也越来越多。为研究复合材料帽型加筋板承受轴向压缩的能力,首先对不同蒙皮半径、蒙皮厚度及长桁间距的复合材料帽型加筋板进行了轴压试验,得到了局部屈曲载荷、破坏载荷与加筋板曲率系数、长桁间距的关系,然后,通过引入曲率修正系数,修正了现有加筋板屈曲载荷的工程估算公式;最后,利用分段处理法结合有效宽度概念改进了加筋板轴压极限承载的工程算法。结果表明:帽型复合材料加筋板局部屈曲载荷及最终破坏载荷与曲率系数正相关;改进的方法能对复合材料加筋板的极限承载进行准确预测。所得结果表明该方法为复合材料加筋板结构设计及载荷估算提供了一种新方法,具有一定的工程应用价值。   相似文献   

5.
压缩载荷下复合材料整体加筋板渐进损伤非线性数值分析   总被引:3,自引:0,他引:3  
建立了考虑脱粘的复合材料整体加筋板渐进损伤有限元分析模型。该模型采用界面单元模拟筋条与壁板之间的连接界面, 连接界面和复合材料层板分别采用Quads准则和Hashin准则作为失效判据, 基于ABAQUS软件, 建立了含连续损伤状态变量的材料刚度退化方案。基于该模型, 采用非线性有限元方法研究了压缩载荷下复合材料整体加筋壁板在考虑初始几何缺陷时的破坏过程, 分析了结构相应失效模式的细观损伤机制; 详细讨论了轴向刚度比对结构承载能力及破坏模式的影响。结果表明: 考虑脱粘损伤的有限元模型能有效模拟加筋板的破坏过程; 在加筋板铺层设计合理的情况下, 增加筋条与壁板刚度比能有效提高加筋板截面单位面积的承载能力。   相似文献   

6.
加筋板总体失稳分析的等效层合板模型   总被引:3,自引:1,他引:2  
基于等效刚度的思想,通过设定层合板的属性参数模拟了加筋板结构的力学特性,提出了一种适用于不同截面形状以及布局形式的加筋板总体失稳分析的等效层合板建模方法。利用PATRAN/NASTRAN 软件比较了反映实际壁板形状的高精度有限元模型与对应的赋有层合板属性的等效刚度简化模型。对于工程中常见形状的加强筋以及不同布局形式的壁板,2种模型的一阶线性失稳因子基本一致,从而验证了将等效层合板模型用于加筋壁板结构的稳定性分析可以满足工程精度要求,并显著提高了计算效率。  相似文献   

7.
以船舶结构优化设计为背景,针对目前结构安全余量过高导致加筋板板筋刚度过匹配现状,提出板筋刚度匹配临界刚度的概念,推导了板筋刚度比关系式。以T型复合材料筋材为对象,建立优化模型,基于Isight软件平台对设计变量进行灵敏度分析,简化设计变量。采用多岛遗传算法对筋材开展多变量优化设计,结合工程实际在筋材优化结果基础上确定设计方案,并开展复合材料加筋板力学性能试验研究,验证了多变量优化设计方法的可行性。研究表明:利用提出的加筋板板筋刚度比关系式,可以指导板筋刚度匹配设计;对T型复合材料筋材进行优化设计时,提升腹板高度对优化目标影响最明显;在等刚度约束前提下,提出的T型筋材优化设计方案能够较好地实现优化目标,同时保证了较优的经济性。   相似文献   

8.
根据复合材料工字型加筋壁板的工艺铺设特点,建立了一种特殊的有限元模型,将工字型筋条按照凸缘顶板、[形腹板、凸缘底板、以及蒙皮四个层合板进行建模。针对工字型加筋壁板的铺层特征,本研究采用二级优化策略对工字型加筋壁板进行以静强度、刚度和稳定性为约束条件的轻量化设计,与一级优化(铺层厚度和弯曲刚度系数的调整)相比,二级优化采用改进的自适应遗传算法优化层合板的铺层顺序,优化设计结果可以直接用于工程应用,有限元模型和优化方法对复合材料工字型加筋壁板的设计具有指导意义。  相似文献   

9.
复合材料多墙式结构非线性稳定性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
多墙式结构是用整体的蒙皮腹板结构替代传统的蒙皮加筋结构。它可以降低翼面高度,减轻重量,提高结构效率。当前特别需要一种关于复合材料多墙结构的分析计算方法。本文作者在层合板非线性稳定理论的基础上,针对多墙结构这一具体结构形式,采用刚度等效方法,建立了相应的本构方程和非线性稳定性控制方程组,并对其进行数值求解,得到各种边界条件下和面内载荷下的总体和局部失稳临界载荷。通过分析验证,计算结果可以很好地满足工程精度要求。   相似文献   

10.
为确定翼肋支撑对复合材料加筋板轴压性能的影响,对施加翼肋支撑前后的复合材料工型加筋板和帽型加筋板进行压缩试验和数值模拟研究。轴压试验中,通过应变计和影像云纹法实时监测试验件的失稳载荷及失稳模态,通过断面观测分析结构损伤破坏机制。基于ABAQUS软件建立有限元模型模拟加筋板屈曲及后屈曲过程,通过失稳节线及反节线上的应力分布变化分析加筋板破坏机制。计算结果与试验结果相吻合,表明翼肋支撑对不同筋条加筋板失稳模态有影响但均不改变结构失稳载荷,位于节线上的翼肋支撑对工型加筋板破坏载荷影响较小,但位于反节线上的翼肋支撑使帽型加筋板的承载能力提高了26.2%。试验件失稳后应力向反节线上筋条蒙皮界面集中,过高的应力导致界面脱粘,使得结构集中在反节线上破坏。   相似文献   

11.
为研究侧边边界条件对复合材料加筋板压缩稳定性能的影响,首先采用有限元软件对压缩载荷作用下的复合材料加筋板进行建模数值计算,得到加筋板在侧边简支和自由2种边界条件下的屈曲载荷和形式,然后采用工程计算方法对加筋板轴压承载能力进行了估算,参考计算结果,分别对侧边有支持和侧边自由2组加筋板进行轴向压缩试验,分析侧边边界条件对试验件的屈曲形式、屈曲载荷以及后屈曲破坏过程的影响。试验结果表明:侧边支持条件会影响加筋板的屈曲形式和破坏形式。对于侧边有支持的试验件,屈曲后整体变形较小,筋条的压缩断裂是主要的破坏形式;而侧边自由的试验件屈曲后会逐渐出现整体弯曲变形,变形引起的筋条脱粘和弯曲断裂则是主要的破坏形式,且筋条脱粘会显著降低结构的承载能力。有限元计算结果与试验结果较吻合,验证了有限元模型的合理性。采用工程计算方法对侧边有支持的加筋板承载能力进行估算具有较好的精度。  相似文献   

12.
提出了一种考虑屈曲的复合材料加筋壁板铺层顺序优化方法。基于复合材料加筋壁板屈曲载荷求解的能量法,系统推导了轴压载荷作用下复合材料加筋壁板蒙皮、筋条局部屈曲载荷的显示表达式,考虑了加筋壁板各板元之间的弹性支持作用及筋条下缘条的影响,引入工程法求解了加筋壁板整体屈曲载荷。基于国产自主结构分析软件HAJIF中的复合材料铺层工程数据库,以铺层参数为中间变量,利用本文提出的复合材料加筋壁板屈曲载荷求解方法,构建了考虑屈曲的复合材料加筋壁板铺层顺序优化设计流程并完成程序实现,将最小二乘法用于最优铺层顺序与工程铺层数据库的匹配。相比于传统有限元计算方法,本文提出的复合材料加筋壁板屈曲载荷求解方法具备较好的求解精度及求解效率。复合材料加筋壁板优化算例表明,采用本文提出的加筋壁板屈曲载荷分析及其优化方法,在结构重量不变的前提下,屈曲载荷提高约17%,且铺层顺序优化结果可直接从铺层工程数据库中提取并用于工程实际。   相似文献   

13.
为确定脱胶缺陷对复合材料加筋板屈曲及后屈曲特性的影响,对含不同脱胶缺陷工型筋条的复合材料加筋板进行了压缩试验研究。结果表明,30 mm和50 mm的缺陷对试验件承载能力影响很小,当缺陷尺寸增至80 mm时,试验件后屈曲承载能力明显下降。借助超声检测技术对缺陷的扩展行为进行了监测,结果表明,当压缩载荷达到破坏载荷的85.3%时,预制缺陷的对角位置处出现扩展迹象。通过影像云纹法获得两半波和三半波失稳模态的形成过程。对失稳模态的监测结果还表明,随缺陷长度增加,该型加筋板的失稳模态从三半波向两半波转换。在试验基础上,利用ABAQUS软件建立有限元(FE)模型,依次进行了屈曲及后屈曲过程的数值模拟。屈曲分析用于获得试验件的失稳载荷及模态,在后屈曲分析中将失稳波形以几何扰动的形式引入FE模型,最终计算结果与试验结果基本吻合,表明该模型可以用于复合材料加筋板屈曲及后屈曲性能的预测。  相似文献   

14.
复合材料翼面壁板轴压稳定性   总被引:1,自引:0,他引:1       下载免费PDF全文
基于T型长桁铺层数不同的两块复合材料翼面加筋壁板试件SC-1和SC-2,开展轴压稳定性试验研究,并提出一种预测屈曲载荷及最小后屈曲承载能力的工程分析方法,结合有限元特征值屈曲分析方法、有限元弧长法对试件的屈曲载荷、屈曲模态及后屈曲承载能力进行分析。试验结果表明,铺层数较多的试件SC-1的蒙皮局部屈曲应变较高,壁板也具有更高的屈曲载荷。在后屈曲阶段,SC-2加载到试验屈曲载荷的2.4倍未发生材料破坏和长桁蒙皮间脱粘损伤。工程分析方法和特征值屈曲分析能够准确预测壁板的屈曲载荷,最大误差分别为-9.3%和-2.8%,工程分析得到SC-2的最小后屈曲承载能力为试验屈曲载荷的2.09倍。有限元弧长法分析得到两件试件的屈曲载荷误差均小于1%,并具有壁板轴压屈曲模态预测和变形跟踪能力。   相似文献   

15.
The present study deals with the “dynamic buckling” of a laminated composite stringer–stiffened curved panel. The “dynamic buckling”, in the present study, is concerned with the unbounded lateral response of the panel, which is subjected to an axial impact load.In reinforced panels with widely spaced adequately stiff stringers, the structure may pass through two major states before its total collapse: buckling of the panel skin between stiffeners and buckling of the stiffeners themselves. This study focuses on the lowest buckling load of the stringer–stiffened panel, which is, buckling of the panel skin between stiffeners.The analysis of the laminated composite stringer–stiffened cylindrical panel was performed by using the commercial ANSYS finite element software. The model simulates the structure and its associated boundary conditions. The boundary conditions simulate the stringer–stiffened cylindrical panel as a part of a fuselage. The static buckling analysis was performed using the eigenvalue buckling approach to determine the static critical load. Modal analysis was used to calculate the first natural frequency and corresponding mode shape of the structure. Nonlinear transient dynamic analysis was used to determine the dynamic critical load. In the transient dynamic analysis the Newmark method with the Newton–Raphson scheme were used.In the present study, the equation of motion approach was applied. By this approach, the equations of motion were numerically solved for various load parameter values (loading amplitude and loading duration) to obtain the system response. Special attention was given to the neighborhood of loading durations corresponding to the period of the lowest bending frequency of the skin.For each load duration, the dynamic buckling load was calculated using a load versus lateral displacement curve generated by the ANSYS code.The results were plotted on a dynamic load amplification factor (DLF) graph. The DLF is defined, as the ratio of the dynamic buckling to the static buckling of the panel. For loading periods in the neighborhood of the lowest natural frequency of the panel, the DLF was less than unity. It means that, for those particular loading periods, the dynamic buckling load is lower than the static one.  相似文献   

16.
Optimal design of laminated composite stiffened panels of symmetric and balanced layup with different number of T-shape stiffeners is investigated and presented. The stiffened panels are simply supported and subjected to uniform biaxial compressive load. In the optimization for the maximum buckling load without weight penalty, the panel skin and the stiffened laminate stacking sequence, thickness and the height of the stiffeners are chosen as design variables. The optimization is carried out by applying an ant colony algorithm (ACA) with the ply contiguous constraint taken into account. The finite strip method is employed in the buckling analysis of the stiffened panels. The results shows that the buckling load increases dramatically with the number of stiffeners at first, and then has only a small improvement after the number of stiffeners reaches a certain value. An optimal layup of the skin and stiffener laminate has also been obtained by using the ACA. The methods presented in this paper should be applicable to the design of stiffened composite panels in similar loading conditions.  相似文献   

17.
Composite structures with cutouts (like panels with holes) are a challenge to design because discontinuities of this kind provoke stress concentrations and become critical regions. With curved fibres, the effect of these discontinuities can be decreased by choosing the fibre paths properly. In this article, fibre-path optimization to improve the buckling load of laminated composite panels with cutouts is studied. Two fibre path parameterizations are tested: the usual curvilinear Cartesian and the radial one, proposed in this article, in which the fibre orientations vary linearly with the Euclidean distance from the centre of the panel. To reduce the simulation costs associated with the optimization, the Efficient Global Optimization (EGO) algorithm is used. EGO is a technique based on a stochastic process approach (Kriging) that approximates expensive-to-evaluate functions and sequentially maximizes the expected improvement to update the surrogate at each iteration. A stiffened panel with a cutout subjected to compression and in-plane shearing loads is analysed. The results show that the buckling load when curved fibres are used is substantially higher than the buckling load for straight-fibre laminates. In addition, the optimization framework indicates a low final computational burden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号