首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the air-arc cutting process has been widely used in material processing engineering, little is known about the temperature and stress in the air-arc cutting of plates. Here, a three-dimensional finite element model including the material removal and thermal effect of the arc is developed to study the temperature and stress fields of a CT3 steel plate during the air-arc cutting and welding processes. The influences of the air-arc cutting process on the initial stress field and of the welding process on the initial residual stress are of primary importance. It is very important for researchers to clarify the temperature and stresses during welding and cutting processes and to fully understand the mechanism of the influence of cutting and welding on the plate.  相似文献   

2.
By conducting the numerical and experimental analysis, the influence of heat input on the microstructures and mechanical properties of laser welding GH4169 bolt assembly is systematically investigated. The weld formation, temperature field, and residual stress distribution during laser welding by using the finite element modeling are consistent with experimental results. The numerical simulation results show that the increase of heat input imparts lower residual stresses and higher temperature gradient. During the process of laser welding, the steepest temperature gradient and the peak residual stress arise in the fusion zone (FZ). In addition, the dissolution of γ″ and γ′ toward the fusion line increases in heat affected zone (HAZ), but only Laves phase is observed in FZ. With increasing heat input from 24 to 48 J mm−1, the ultimate tensile strength of welded joints decreases. Both the lowest microhardness values and tensile failure of GH4169 alloy laser welded joint are in FZ. Herein, it is that the relationship among the heat input, microstructures, and mechanical properties of GH4196 bolt assembly in laser welding is systematically established, which will be of guiding significance for the selection of welding parameters in aerospace.  相似文献   

3.
Abstract

The premature failure of parts designed to operate at high temperatures often occurs in low-ductility microstructures in a weld or its heat-affected zone (HAZ). Clearly, a knowledge of how the welding process variables determine these microstructures is essential to the designer of welding procedures. In an accompanying paper relationships are established which describe how the dimensions of single manual metal arc weld beads and their associated HAZs are related to the welding process parameters. Here it is shown how these relationships can be used to optimize the metallurgical properties of multipass welds by controlling the process parameters. The factors given particular attention are dilution of the weld metal by the parent material, refinement of the HAZ using controlled deposition, and refinement of the structure of the weld metal. Data for BOC Murex Suprex B welding electrodes and a mild steel substrate are used throughout for illustration, but the methods presented are applicable to other combinations of materials provided the correct material constants are used. The present work was prompted by a need to improve metal deposition rates during manual metal arc repair of foundry defects in large Cr–Mo–V castings. The practical implementation of the results is also considered.

MST/193b  相似文献   

4.
Hybrid laser – metal active gas (MAG) arc welding is an emerging joining technology that is very promising for shipbuilding applications. This technique combines the synergistic qualities of the laser and MAG arc welding techniques, which permits a high energy density process with fit-up gap tolerance. As the heat input of hybrid laser – arc welding (HLAW) is greater than in laser welding, but much smaller than in MAG arc welding, a relatively narrow weld and restricted heat affected zone (HAZ) is obtained, which can minimize the residual stress and distortion. Furthermore, adding MAG arc can increase the penetration depth for a given laser power, which can translate to faster welding speeds or fewer number of passes necessary for one-sided welding of thick plates. In this work, a new hybrid fiber laser – arc welding system was successfully applied to fully penetrate 9.3 mm thick butt joints using a single-pass process through optimization of the groove shape, size and processing parameters.  相似文献   

5.
Wrought material as well as physically simulated welding heat affected zone (HAZ) samples of an UNS S32304 duplex stainless steel were subjected to electrochemical corrosion tests and electron microscopy characterization. An impaired corrosion resistance of the HAZ microstructures compared to the wrought material microstructure was observed. Calphad-based numerical simulation of phase transformations and solute redistribution taking place during welding provided an explanation of the observed corrosion behavior. The poor corrosion resistance of the HAZ microstructures studied was mainly attributed to a decrease in corrosion resistance of ferritic grains after welding, which exhibited lower chromium content than ferritic grains in the wrought material.  相似文献   

6.
不同变形状态下变物性梯度功能材料板瞬态热应力   总被引:6,自引:0,他引:6  
许杨健  李现敏  文献民 《工程力学》2006,23(3):49-55,92
用非线性有限元法分析了由ZrO2和Ti-6Al-4V组成的变物性梯度功能材料板的对流换热瞬态热应力问题,与已有文献比较检验了方法的正确性,给出了该材料板在不同变形状态下的瞬态热应力分布,并与常物性时的结果进行了比较。结果表明:无限自由长板内的热应力最小;当无限长板只能伸长、不能弯曲时,板内瞬态拉应力最大;当无限长板伸长、弯曲受限时,板内的瞬态压应力最大;考虑变物性时的最大拉应力比常物性减小48.9%,最大压应力减小39.6%;此外,对流换热系数的变化对不同变形状态下该变物性材料板瞬态热应力场的影响显著。此结果为该材料的设计和应用提供了准确的理论计算依据。  相似文献   

7.
This article investigates the nondestructive capability of ultrasonic waves in residual stress evaluation of austenitic stainless steel plates (AISI 304L). Longitudinal critically refracted (L CR ) waves are employed to measure the residual stresses. Measuring the acoustoelastic constant through the tensile test is eliminated on the main investigated sample to keep it intact. Another welded plate with the same welding specification, geometry, thickness, and the same material is used to extract tensile test samples. To find the acoustoelastic constant of the heat affected zone (HAZ), a metallographic investigation is done to produce microstructure similar to that of the HAZ in a tensile test sample. A finite element model of welding process, which is validated by hole-drilling method, is used to verify the ultrasonic results. The results show good agreement between finite element and ultrasonic stress measurements which is accomplished nondestructively.  相似文献   

8.
The present study mainly investigated Type IV cracking occurring in the fine grained heat affected zone (FGHAZ) in the welded joint of ASME P92 steel at high temperature and low applied stress by numerical simulation method. Based on the modified Karchanov–Rabotnov constitutive equation, the user defined material subroutine (UMAT) was complied and the creep damage accumulation was carried out by finite element method using ABAQUS codes for the welded joint at 650 °C and 70 MPa. Calculated results revealed that the most severe creep damage and the highest equivalent creep strain occurred in the FGHAZ because of high maximum principle stress and high maximum principle stress. Furthermore, the effect of groove angle and HAZ width on the creep damage accumulation was investigated. It indicated that a small groove angle and a narrow FGHAZ width could deteriorate the creep damage accumulation because of the degradation of maximum principle stress and stress triaxiality in the FGHAZ.  相似文献   

9.
In this article, laser cladding process with a blown powder feeding was used to deposit nickel-based IN-625 superalloy, cobalt-based hardfacing Stellite 6 alloy and high-vanadium CPM 10V tool steel onto a similar or dissimilar base material, respectively, to investigate the development and controllability of process-induced residual stresses in the clad and to analyse their correlation with microstructural evolutions of the clad and heat-affected zone (HAZ) during cladding and post-heat treatments. The residual stresses were evaluated using the hole-drilling method as per ASTM E837-95, whereas the microstructures were studied using X-ray diffractometer, optical microscope and scanning electron microscope. A particular attention was paid to combined effect of both clad and HAZ on the build-up of residual stresses in the clad. It is expected that the experimental results will form a useful addition to the existing knowledge with respect to the topic and, more significantly, to promote confidence on industrial applications of laser-clad IN-625, Stellite 6 and CPM 10V materials.  相似文献   

10.
Cyclic Stress-Strain-Behaviour of Simulated HAZ-Microstructures and Welds Welds are inhomogenities of the structure. Seen in this view often they are the weakest link of the chain. Therefore they are analysed to know the stress distribution. If stresses once become higher than yield stress, a differentiation into areas with different microstructures is necessary. These areas should be analysed with different material parameters. The results of this report give support to this point of view especially when cyclic plastic deformation occurs. It is reported how to manufacture specimens with heat-simulated microstructures of the heat affected zone (HAZ). The stress-strain-behaviour of those TIG-welds is discussed which lie longitudinal or transverse to the load direction.  相似文献   

11.
Transient heat and moisture diffusion and the resulting hygrothermal stress field are analysed in a layered plate subjected to hygrothermal loadings at the external surfaces. The one-dimensional transient diffusion is formulated as a one-way coupled problem wherein moisture-induced effects on heat diffusion are neglected, but the exact continuity in moisture flux at layer interfaces holds unlike existing analytical studies. An analytical solution to the diffusion problem is obtained by extending a previously derived solution for double-layered plates. Hygrothermal stresses are evaluated by superposition of stresses due to the applied temperature and moisture fields. First, numerical calculations are performed for a double-layered plate to investigate the influence of moisture-flux continuity at the layer interface on hygrothermal stress distribution. Second, the obtained solutions are applied to the hygrothermoelastic problem of a functionally graded material-like (FGM-like) non-homogeneous plate whose physical properties vary along the thickness direction. Numerical results show that the use of inappropriately simplified continuity conditions for moisture flux may cause a significant error in evaluating the transient hygrothermal stresses in a layered body. Moreover, it is demonstrated that a gradual change in the material composition of FGM-like non-homogeneous plates induces considerable hygrothermal stress relaxation.  相似文献   

12.
Summary In the present paper, dynamic and quasi-static behaviors of magneto-thermo-elastic stresses in a conducting infinite plate subjected to an arbitrary variation of the magnetic field are investigated. It is assumed that a magnetic field defined by an arbitrary function of time acts on both side surfaces of the infinite plate in the direction parallel to its surfaces. Fundamental equations of one-dimensional electromagnetic, temperature and elastic fields are formulated. Then, solutions of magnetic field, eddy current, temperature change and both dynamic solutions and quasi-static ones of stresses and deformations in the infinite plate are derived analytically. The solutions of stresses are determined to be sums of thermal stress caused by eddy current loss and magnetic stress caused by Lorentz force. For the case that the arbitrary function is given by the sine function, the dynamic and quasi-static behaviors of the stresses are examined by numerical calculations.  相似文献   

13.
This paper investigates the stress fields for a crack located at the fusion line of a weldment. The strength mis-matching and the size of the HAZ were varied, and the corresponding distribution of the maximum principal stress was examined. The weld metal strength was globally overmatched with respect to the base material, but locally over- and undermatched with respect to the heat affected zone. Three cases of mis-match were compared, and it was found that reducing the strength of the HAZ lowered the maximum principal stresses.  相似文献   

14.
Residual stresses induced during turning processes can affect the quality and performance of machined products, depending on its direction and magnitude. Residual stresses can be highly detrimental as they can lead to creeping, fatigue, and stress corrosion cracking. The final state of residual stresses in a workpiece depends on its material as well as the cutting-tool configuration such as tool geometry/coating, cooling and wear conditions, and process parameters including the cutting speed, depth-of-cut and feed-rate. However, there have been disagreements in some literatures regarding influences of the above-mentioned factors on residual stresses due to different cutting conditions, tool parameters and workpiece materials used in the specific investigations. This review paper categorizes different methods in experimental, numerical and analytical approaches employed for determining induced residual stresses and their relationships with cutting conditions in a turning process. Discussion is presented for the effects of different cutting conditions and parameters on the final residual stresses state.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-021-00371-0  相似文献   

15.
Consideration is given to the twin problems of the elastic buckling of rectangular, symmetrically-laminated composite plates and of the vibration in the presence of applied in-plane stress of such laminates. First-order shear deformation plate theory provides the mathematical model of plate behaviour and the Rayleigh-Ritz and finite strip methods are used to generate numerical results for laminates of thin and moderately thick geometry, with various combinations of standard plate edge conditions. The applied stresses include uniform shear stress as well as direct stresses, and anisotropic material properties can be included. The presented results demonstrate the accuracy of the numerical methods and highlight the very significant influence that transverse shear and related thickness effects can have in the subject problems.  相似文献   

16.
This paper presents the failure analysis of AISI-304 stainless steel tank that was fabricated by welding and used for the storage of styrene monomers. After about 13 years of satisfactory operation, significant cracking was observed adjacent to the weld joints and in base plate near tank foundation. Weld repair was by shielded gas arc welding using AISI 308 stainless steel filler wire. The failed base plate was replaced with the new AISI 304 base plate of same thickness. After a short period of time, seepage was observed along the weld bead. Upon nondestructive testing cracks were found in the heat-affected zone and in the base plate. The failure investigation was carried out on welded and base plate samples using spectroscopy, optical and scanning electron microscopy, fractography, SEM–EDS analysis, microhardness measurements, tensile and impact testing. The results revealed transgranular cracks in the HAZ and base plate, and the failure was attributed due to stress corrosion cracking. Cracks initiated as a result of combined action of stresses developed during welding and the presence of a chloride containing environment due to seawater. It was further observed that improper welding parameters were employed for weld repair which resulted in sensitization of the structure and postweld heat treatment to remove weld sensitization and minimize the residual stresses was not done.  相似文献   

17.
Residual stresses and microstructure of thermal cutted steel sheet A research project of Doppelmayr Seilbahnen GmbH and the Swiss Federal Laboratories of Materials Testing and Research (EMPA) was launched to investigate the residual stress depth profiles induced by different thermal cutting methods. The measurements have been performed by X‐ray stress analysis. Pronounced differences in the stress levels at the surface and for the depth profiles have been obtained for the different cutting methods (plasma, microplasma, autogenous (gas), and laser cutting). Near the surface a small region of compression stresses due martensitic or bainitic transformation was found. With increasing depth a transition to tensile stresses occurs, which are caused by the contraction in the heat affected zone (HAZ) during cooling. The highest tensile (237MPa) and compression stresses (‐550MPa) have been obtained for the laser cut samples, while the microplasma cut samples showed the lowest residual stresses (max. 180MPa/‐56MPa).  相似文献   

18.
在毛坯成形过程中,材料力学性能的非均匀性导致铝合金厚板内产生残余应力,以致在后续切削加工过程中,随着材料的去除,残余应力的释放使得整体结构件发生变形,严重影响着整体结构件的尺寸稳定性。因此,定量化研究切削过程中残余应力释放的加工变形分析与预测是进行加工质量控制的核心环节,对于实现加工过程的高效化和精密化至关重要。通过铝厚板的材料去除转化为残余应力的释放,利用静力平衡条件将作用于整体结构件的残余应力等效为外力后,综合考虑铝厚板横向方向和轧制方向的残余应力,依据弯曲变形理论创新性地建立铝厚板内初始残余应力释放模型。残余应力释放模型不仅能够准确地计算整体结构件的加工变形,而且还能够方便地优化工艺参数完成加工变形的有效控制。根据模型计算值与有限元仿真值、实验测量值的相互比较,分析结果表明:无论是幅值还是变形曲线,计算值都与仿真值具有高度一致性,而与测量值相比,尽管在变形曲线上具有很好的吻合性,但由于残余应力的测量误差使得两者在幅值上亦存在一定误差。  相似文献   

19.
Cyclic deformation behavior of friction-stir-welded dissimilar AA2024-T351 to AA7075-T65 aluminum alloy joints was evaluated via stepwise tests at different strain rates,along with transmission electron microscopy examinations to characterize the precipitates required to assess internal stresses.Electron backscatter diffraction was employed to observe the inhomogeneous microstructures of the FSWedjoints.Strain localization appeared in the heat affected zone (HAZ) of AA2024 side.After cyclic deformation of 500 cycles at a total strain amplitude of 0.5 %,the strength of the dissimilar joints resumed basically to that of AA2024 base material.And the AA2024 HAZ was obviously hardened,which should be attributed to the introduced dislocations during cyclic deformation process.Cyclic hardening capacity of the joints increased with decreasing strain rate.  相似文献   

20.
This paper investigates distortions and residual stresses induced in butt joint of thin plates using Metal Inert Gas welding. A moving distributed heat source model based on Goldak’s double-ellipsoid heat flux distribution is implemented in Finite Element (FE) simulation of the welding process. Thermo-elastic–plastic FE methods are applied to modelling thermal and mechanical behaviour of the welded plate during the welding process. Prediction of temperature variations, fusion zone and heat affected zone as well as longitudinal and transverse shrinkage, angular distortion, and residual stress is obtained. FE analysis results of welding distortions are compared with existing experimental and empirical predictions. The welding speed and plate thickness are shown to have considerable effects on welding distortions and residual stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号