首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
地铁对周边建筑物振动影响分析   总被引:8,自引:5,他引:8  
建立了土层系统-建筑物二维共同作用有限元模型,采用Newmark隐式逐步数值积分法,从地铁列车荷载频谱特征和场地土层类型角度,分析了由地铁运行所诱发的周边建筑物振动响应规律。分析表明,在同一频率地铁振动荷载影响下,同一建筑物各楼层振动响应水平基本相同,上部楼层的振动仅比下部楼层振动有小幅上升;地铁低频段荷载对建筑物振动的影响大于高频段荷载的影响,但该低频段宽度要比建筑抗震分析中所考虑的地震荷载频段要宽;不同类型土层上建筑物的振动响应规律基本相同,表现为随建筑物距离地铁线路距离的增大,由地铁运行所诱发的建筑物的振动响应波动减小,但随土层硬度增加,建筑物的振动响应水平和衰减幅度也随之减小。  相似文献   

2.
地铁引起建筑物振动评价研究   总被引:3,自引:0,他引:3  
因为不能直接量测地铁环境中拟建建筑物的振动,介绍基于理论计算分析对地铁运行引起建筑物振动的评价方法。由于地铁隧道底面振动记录资料缺乏,量测困难;列车-轨道-地基系统的模拟不尽完善。针对上海地铁隧道正上方某拟建建筑物的振动问题,建立上部结构的刚性地基有限元模型,输入场地实测地面振动加速度激励,计算结构振动在时域内的响应。利用傅里叶变换,对结构时域内的响应进行频域分析,根据国家标准对地铁引起建筑物的振动做出评价,从而为地铁环境中建筑物防振设计提供依据。  相似文献   

3.
在软土和岩层不同地质条件下采集列车通过时隧道壁及隧道上方地面距隧道中心线水平距离为0、15 m和30 m处的垂向振动,经过Fourier 变换和1/3 倍频程处理得到振动的频谱特性,分析不同频段振动的传递损失。结果显示,对于软土地质和岩层地质,在传递过程中都存在两个振动峰值;振动从隧道壁传至地面0 m时,软土内高频振动衰减较大,岩层内低频振动衰减较大;在地面传播过程中,对于软土地质,在15 m处出现振动放大现象;在30 m测试距离内,12.5 Hz 以下的低频振动在两种地质条件下均衰减较小,在30 m处40 Hz 以上的振动在两种地质条件下均衰减较大,此研究结果可为不同地质条件下地铁线路上部建筑减振及地铁线路规划提供参考。  相似文献   

4.
为研究路基段列车引起环境振动传递特性以及列车编组、速度、轴重等因素对振动的影响,对昌九城际铁路线路基段进行大地振动现场测试。从时域、频域等多方面分析五种列车在不同速度下运行引起的三向大地振动。结果表明:近场大地振动能量集中在10 Hz~200 Hz,远场在10 Hz~80 Hz,近场处X、Y、Z方向主频分别为38.7 Hz、51.9 Hz、64.4 Hz,远场处主频均为25.9 Hz;随着距离的增加,X与Z方向在各频段的振动衰减量相似,Y方向在各频段的衰减量大于X与Z方向;地面竖向Z振级与列车速度近似呈线性关系,在30 m处Z振级增大速率为0.0714dB/(km/h);列车速度变化对50~100 Hz的高频振动影响较大,速度由36增大至119 km/h时,16、50、100 Hz处Z方向分别增加了9.56、17.13、14.87 dB;列车编组对地面振动响应影响较小,当运行速度为115 km/h时,CRH2A动车组列车的不同编组(8节或16节)下引起的地面振动响应几乎完全相同;列车轴重是影响地面振动响应大小的重要因素,且轴重越大引起的振动响应越大。  相似文献   

5.
针对某城际快铁高架桥列车运行引起的附近自由场地环境振动进行现场测试。结果表明,在近场测点,加速度时程呈明显列车周期性加载现象;随距离的增加,振动快速衰减,并在7.5 m处有反弹增大现象;距线路越远,振动衰减越慢,地面振动加速度级随距离的变化满足对数关系;高架轨道交通引起的地面横向水平振动加速度级较竖向大3.9~9.0 dB;地面竖向振动优势频率范围10~100 Hz,横向振动频率主要在4~100 Hz,低频振动较高频振动传播距离更远;双线高架桥引起的环境振动偏载效应突出;振动加速度级随车速的变化规律为0.036~0.049 dB/(km·h-1)。  相似文献   

6.
为了解济南地区地铁运营产生的环境振动特性,分别在地铁车站、区间地面及邻近建筑物不同位置处设置测点,全面测试地铁2号线运行引起的环境振动情况,分析不同测点振动响应的时频特征,探讨地铁环境振动在地面及不同结构物中的传播规律。研究表明:随与地铁隧道距离的增加,环境振动周期性逐渐减弱,地铁车站、区间地面及邻近建筑物内振动水平分布介于0.09 mm/s~0.72 mm/s、0.11 mm/s~0.64 mm/s以及0.07 mm/s~0.15 mm/s之间;地铁车站和邻近建筑物内振动频率成分较区间地面更为丰富,体现土体的材料阻尼和结构物激发中高频振动的作用。不同场地及建筑物内振动传播规律不同,建筑物基础和底板起到隔振减振作用。研究成果使现有地铁环境振动实测结果数据得到进一步充实,可为类似地层数值计算提供验证。  相似文献   

7.
福州地铁尚未建成时,需要对临近建筑物的振动响应进行预测。由此,建立车轨垂向耦合振动数值分析模型和隧道—土体—建筑物有限元模型,参考福州地铁振源参数及沿线典型II类场地土类型,对地铁运行后,临近建筑物的振动响应作出了理论预测。分析结果表明,地铁列车运行引发的环境振动主频以中高频振动为主,而建筑物各楼面峰值主频均为建筑物的自振频率。同时,在低层楼面存在激励振动的中高频反弹区。列车车速和单双线运行不影响建筑物的振动形态,但能显著影响楼面加速度振级。另外,当多层和小高层建筑至隧道中心水平距离小于10 m,高层建筑小于15 m及位于30 m左右处,车速超过40 km/h时,建筑物部分或全部楼层加速度振级可能超越相关规范规定的振动限值,需要考虑振动控制。  相似文献   

8.
为研究减振扣件对地铁隧道-地表环境振动的减振效果,对普通扣件和减振扣件下列车运行引起的隧道结构和地表振动响应进行现场实测分析,针对减振扣件和普通扣件得到以下结论:(1)减振扣件能明显降低钢轨的水平向振动,采用浮轨扣件后会使得钢轨的垂向振动明显增大;(2)减振扣件能明显控制隧道内结构的振动。对于隧道内振动控制效果,浮轨扣件效果更好。当采用减振扣件后,会出现道床和轨枕处的固有频率向低频偏移的现象,且会造成低频放大;(3)对于地面测点,由于低频振动在土层中的衰减较弱,会导致对与地面测点,双层非线性扣件加速度有效值和加速度峰值小于浮轨扣件。两种扣件均满足规范限定要求,在2 Hz~50 Hz频段范围内双层非线性扣件的加速度级小于浮轨扣件,双层非线性扣件的固有频率出现在63 Hz,浮轨扣件的固有频率出现在20 Hz说明两种扣件对于地面控制频段范围存在差异。  相似文献   

9.
为探究高速列车在流致振动作用下会车压力波对车内气压的影响机理,针对某线路试验高速动车组采用多重等效方法建立有限元车厢、流场以及耦合系统模型,并进行耦合系统模态分析;通过列车交会侧传感器实测会车压力波信号,对车厢耦合系统进行气压冲击加载,分析车内流致振动耦合响应情况;将线路实测车内气压数据运用经验模态分解方法自适应分解,获取各本征模态层,并与流致振动响应数据进行对比分析。结果表明,车体振动位移的频率分布与加载的会车压力波频率相吻合;车内气压级在6.1 Hz、14.67 Hz处较大,分别与耦合系统的第一阶非刚性模态频率与结构的第一阶模态频率相吻合;同时验证会车压力波在车厢流致振动耦合模型下对车内气压影响机理分析的正确性。  相似文献   

10.
行驶列车引起的周边建筑物振动分析   总被引:4,自引:3,他引:4  
随着城市化的加速,铁路周边等有振动影响的区域也出现了高层建筑,轨道交通系统对大都市生活环境和工作环境的振动影响,越来越多地引起公众的强烈反应。结合工程实际,对铁路附近——拟建场地进行振动数据采样,并将测得的地面加速度作为对拟建建筑物的激励。拟建建筑物是从低到高的典型的钢筋混凝土框架结构。根据计算结果,对拟建建筑物在激励下的动力响应的特点进行了讨论。最后将数值结果与允许振动标准作出比较,得出了一些列车经过对附近建筑物振动影响的规律。  相似文献   

11.
实测广州地铁3号线厦滘车辆段咽喉区直、曲线段列车运行引起的周围地面振动影响,分析列车引起地面振动加速度在时、频域内的传播规律。结果表明,咽喉区直线段在轨道35 m范围内,地面竖向振动加速度级为72~95d B,略大于水平振动加速度级62~95 d B;咽喉区曲线段在轨道25 m范围内,地面竖向振动加速度级为70~98 d B,略小于水平振动加速度级80~98 d B;对地铁车辆段咽喉区临近的环境振动评价时,应同时考虑水平、竖向振动影响;中高频振动随距离增加衰减速度较低频快,咽喉区列车运行引发的振动传递到临近建筑物时主要频率成分为4~60 Hz。建议在车辆段减振措施设计时应重点考虑中低频振动的减振方案;在路基外侧沿轨道方向结合排水设施设置明沟利于减弱车辆段列车运行引发的振动传播。  相似文献   

12.
精密仪器对工作环境的振动要求通常有微振、低频等特点,因此准确预测分析列车振动对精密仪器的影响具有一定的难度。结合北京地铁16号线规划通过北京大学西门的工程案例,首次在频域内采用两位校准法进行了远场低频微振动的定量预测研究。研究过程中,利用实测钢轨振动加速度时程计算得到模拟地铁列车荷载;建立北京地铁4号线校准模型,利用实测隧道壁和地表的振动响应对输入荷载、模型参数选择进行校核,确保了模型的预测精度;最后采用校核过的建模方法建立地铁16号线预测模型进行低频振动预测。结果表明:利用该方法得到的地铁列车振动荷载及振动预测模型可以较准确的进行远场低频振动响应预测;地铁16号线地铁采用钢弹簧浮置板后,北大新建实验楼外预测点10~20 Hz频段的振动满足仪器振动要求,但10 Hz以下频段的振动仅满足VC-C标准,需进行实验室或仪器隔振处理。  相似文献   

13.
在列车正常运行条件下对某地铁曲线路段钢弹簧浮置板道床、科隆蛋和普通扣件轨道结构段的隧道壁振动和地面垂向振动进行现场测试,通过时域和频域分析对比地铁经过时不同轨道结构段振动从隧道壁传到地面以及地面垂向振动随距离的传播规律。结果表明:振动从隧道壁传至地面时200 Hz~500 Hz频段衰减较快,且地面垂向振动主频在100 Hz以内,隧道壁振动主频在300 Hz以内;钢弹簧浮置板道床和科隆蛋结构段的地面垂向振动随着离开线路中心线距离的增加而减小;在普通扣件结构段距线路中心线30 m左右处存在一个振动放大区;列车经过时轨道线正上方0~30 m范围内垂向振动的峰值频率主要在40 Hz至63 Hz。该测试方法和研究结果可为地铁线路设计提供相应参考。  相似文献   

14.
地铁列车运行引起的振动对精密仪器的影响研究   总被引:2,自引:1,他引:1  
采用一种数值模型,并结合现场振动实测,对北京地铁4号线列车运行引起的振动对北京大学物理实验室内精密仪器的影响问题进行了研究,并对地铁4号线隧道内浮置板轨道的减振效果进行了探讨。该模型根据移动荷载作用下的动力响应解,把地铁列车运行引起的振动问题归结到计算频率-波数域内的传递函数和频域内移动轴荷载的问题上。传递函数采用三维周期性有限元-边界元耦合的数值模型来计算,移动轴荷载主要考虑为频域内轨道不平顺激励下的轮轨接触力。现场振动实测包括地铁列车与公交车单独引起的振动及两者的合振动测试。结果表明:浮置板轨道是一种有效的减振措施,在其工作频段内有显著的减振效果;在低频段,地铁列车单独引起的振动可能对精密仪器正常工作造成影响,公交车流单独引起的振动以及与地铁列车叠加的振动会对精密仪器的正常工作造成影响,仪器基座处应采取相应的隔振措施来减小这部分振动。  相似文献   

15.
为研究地铁车速对曲线段组合式道床系统振动特性的影响,对比分析地铁列车平均车速为20 km/h、40km/h 和60 km/h 工况下,曲线段组合式道床系统时域和频域的现场测试结果,分析结果表明:行车速度对曲线段组合式道床系统轨道结构垂向位移影响不大;低轨侧的轨道结构时域振动幅值均大于高轨侧;车速由20 km/h 增至60 km/h时,曲线段组合式道床系统低轨侧钢轨、轨道板和隧道壁的垂向振动加速度幅值分别提升14.7 dB、7.6 dB和8.6 dB,高轨侧幅值分别提升12.2 dB、8 dB 和8.4 dB;车速的提高主要增大了轨道结构63 Hz 以下和250 Hz 以上频段的振动,对80~200 Hz频段的振动影响不大;谐振盖板阻尼谐振器能降低组合道床在20~40 Hz频率范围内的垂向振动;车速为60 km/h时,组合式道床系统结构在1 Hz~25 Hz频段的振动显著增加,具体原因有待进一步研究。  相似文献   

16.
地铁引起建筑物振动舒适度分析   总被引:3,自引:2,他引:1  
针对上海地铁附近某拟建建筑的振动舒适度问题,建立结构的有限元模型,输入场地实测地面振动加速度激励,计算结构振动在时域内的响应.结合烦恼率模型,给出了基于烦恼率模型的建筑物振动舒适度分析方法,同时将分析结果与使用振动舒适度标准获得的结果进行比较,结合算例分析表明,这两种分析方法给出的分析结论基本一致,而烦恼率方法则具有更为定量化的特点.  相似文献   

17.
建立结构二维有限元分析模型,利用现场实测地铁运行引起地面振动加速度时程记录,采用多点输入,计算刚性地基上一框架结构由于地铁运行引起的振动加速度值;在此基础上,利用傅里叶变换计算1/3倍频程1Hz~80Hz内各频段对应的振动加速度级。利用同样的计算模型,采用一致输入和行波输入计算结构的振动强度;比较三种激励方式的计算结果,从而考察行波效应等对结构振动的影响。对地铁引起房屋振动做出评价。  相似文献   

18.
针对列车在250~385 km/h高速运行时的轨道、桥梁和地面振动开展现场测试。分别采用连续小波变换、1/3倍频程分频振级和环境振动评价标准对测试数据进行分析,研究振动自轮轨接触处产生,在轨道、桥梁和土体中的传递特性。结果表明:各测点的振动响应均表现出冲击振动特性,地面振动的峰值频率受列车周期性轮轴激励频率和轮轨力峰值频率的影响;桥梁、地面振动响应受到相邻两节车的影响,故建模分析时可仅考虑少数几节车;箱梁、墩顶和地面的总体振动加速度级随车速的增加率分别为0.33、0.52和0.22 dB/(10 km/h);箱梁和墩顶振动的优势频段为31.5~125 Hz,地面振动的峰值频率为40~50 Hz;地面振动随距离的衰减规律符合3次多项式,在测试车速范围内,距离桥墩15 m之外的地面总体Z计权振动加速度级小于80 dB。  相似文献   

19.
隧道内脉冲激励下地层振动传递特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目前,对于地铁运营引起的振动在地层中的传递特性一直未有系统深入的研究。利用自动落锤激励装置锤击轨道减振与控制实验室10m埋深隧道内轨道,研究了0~200Hz频段振动加速度在地层中的传播衰减特性。试验结果表明:(1)隧道结构-地面振动加速度峰值衰减率达到81.25%,地层对振动有很强的衰减作用。(2) 除了30Hz附近频段传递函数幅值大于1,隧道结构到地面振动响应传递函数幅值普遍小于0.4。(3) 隧道结构-地面1/3倍频程加速度级传递损失曲线呈V形分布,传递损失在30Hz附近最小,且为负值,此频段振动加速度能量从隧道传递到地面有放大现象。  相似文献   

20.
针对地铁运行对木结构古建筑的影响这一问题,本文以颐和园北宫门和北京市地铁4号线为研究对象,采用ABAQUS建立了列车-隧道-土层-木结构古建筑耦合模型。通过与现场实测结果对比,验证了有限元模型的精度,并系统地研究了地铁运行时地铁线路与古建筑之间的夹角、列车速度对木结构古建筑振动的影响。结果表明:场地地表与北宫门结构的振动强度的模拟结果与实测结果基本一致,实际工况下北宫门的振动响应满足限值要求;地铁线路与临近木结构古建筑长轴方向夹角为0°时,结构振动强度最大,且对于不同夹角,振动最强烈的均为距地铁线路最近的结构柱;随着列车速度的增大,木结构古建筑的振动强度显著增大,与车速60 km/h时相比,车速为80 km/h时结构的振动幅度增加了19.67%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号