首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Homogeneously alloyed PbSe(x)S(1-x) nanocrystals (NCs) with their excitonic absorption peaks in wavelength shorter than 1200 nm were developed for photovoltaic (PV) applications. Schottky-type solar cells fabricated with our PbSe?.?S?.? NCs as their active materials reached a high power conversion efficiency (PCE) of 3.44%, with an open circuit voltage (V(oc)) of 0.49 V, short circuit photocurrent (J(sc)) of 13.09 mA/cm2, and fill factor (FF) of 0.54 under Air Mass 1.5 global (AM 1.5G) irradiation of 100 mW/cm2. The syntheses of the small-sized colloidal PbSe(x)S(1-x) NCs were carried out at low temperature (60 °C) with long growth periods (such as 45 min) via a one-pot noninjection-based approach in 1-octadecene (ODE), featuring high reaction yield, high product quality, and high synthetic reproducibility. This low-temperature approach employed Pb(oleate)? as a Pb precursor and air-stable low-cost thioacetamide (TAA) as a S source instead of air-sensitive high-cost bis(trimethylsilyl)sulfide ((TMS)?S), with n-tributylphosphine selenide (TBPSe) as a Se precursor instead of n-trioctylphosphine selenide (TOPSe). The reactivity difference of TOPSe made from commercial TOP 90% and TBPSe made from commercial TBP 97% and TBP 99% was addressed with in situ observation of the temporal evolution of NC absorption and with 31P nuclear magnetic resonance (NMR). Furthermore, the addition of a strong reducing/nucleation agent diphenylphosphine (DPP) promoted the reactivity of the Pb precursor through the formation of a Pb-P complex, which is much more reactive than Pb(oleate)?. Thus, the reactivity of TBPSe was increased more than that of TAA. The larger the DPP-to-Pb feed molar ratio, the more the Pb-P complex, the higher the Se amount in the resulting homogeneously alloyed PbSe(x)S(1-x) NCs. Therefore, the use of DPP allowed reactivity match of the Se and S precursors and led to sizable nucleation at low temperature so that long growth periods became feasible. The present study brings insight into the formation mechanism of monomers, nucleation/growth of colloidal composition-tunable NCs, and materials design and synthesis for next-generation low-cost and high-efficiency solar cells.  相似文献   

2.
Law M  Beard MC  Choi S  Luther JM  Hanna MC  Nozik AJ 《Nano letters》2008,8(11):3904-3910
We determine the internal quantum efficiency (IQE) of the active layer of PbSe nanocrystal (NC) back-contact Schottky solar cells by combining external quantum efficiency (EQE) and total reflectance measurements with an optical model of the device stack. The model is parametrized with the complex index of refraction of each layer in the stack as calculated from ellipsometry data. Good agreement between the experimental and modeled reflectance spectra permits a quantitative estimate of the fraction of incident light absorbed by the NC films at each wavelength, thereby yielding well-constrained QE spectra for photons absorbed only by the NCs. Using a series of devices fabricated from 5.1+/-0.4 nm diameter PbSe NCs, we show that thin NC cells achieve an EQE and an active layer IQE as high as 60+/-5% and 80+/-7%, respectively, while the QE of devices with NC layers thicker than about 150 nm falls, particularly in the blue, because of progressively greater light absorption in the field-free region of the films and enhanced recombination overall. Our results demonstrate that interference effects must be taken into account in order to calculate accurate optical generation profiles and IQE spectra for these thin film solar cells. The mixed modeling/experimental approach described here is a rigorous and powerful way to determine if multiple exciton generation (MEG) photocurrent is collected by devices with EQE<100%. On the basis of the magnitudes and shapes of the IQE spectra, we conclude that the 1,2-ethanedithiol treated NC devices studied here do not produce appreciable MEG photocurrent.  相似文献   

3.
Multiple exciton generation (MEG) is a process whereby multiple electron-hole pairs, or excitons, are produced upon absorption of a single photon in semiconductor nanocrystals (NCs) and represents a promising route to increased solar conversion efficiencies in single-junction photovoltaic cells. We report for the first time MEG yields in colloidal Si NCs using ultrafast transient absorption spectroscopy. We find the threshold photon energy for MEG in 9.5 nm diameter Si NCs (effective band gap identical with Eg = 1.20 eV) to be 2.4 +/- 0.1Eg and find an exciton-production quantum yield of 2.6 +/- 0.2 excitons per absorbed photon at 3.4Eg. While MEG has been previously reported in direct-gap semiconductor NCs of PbSe, PbS, PbTe, CdSe, and InAs, this represents the first report of MEG within indirect-gap semiconductor NCs. Furthermore, MEG is found in relatively large Si NCs (diameter equal to about twice the Bohr radius) such that the confinement energy is not large enough to produce a large blue-shift of the band gap (only 80 meV), but the Coulomb interaction is sufficiently enhanced to produce efficient MEG. Our findings are of particular importance because Si dominates the photovoltaic solar cell industry, presents no problems regarding abundance and accessibility within the Earth's crust, and poses no significant environmental problems regarding toxicity.  相似文献   

4.
Thin films of colloidal semiconductor nanocrystals (NCs) are inherently metatstable materials prone to oxidative and photothermal degradation driven by their large surface-to-volume ratios and high surface energies. (1) The fabrication of practical electronic devices based on NC solids hinges on preventing oxidation, surface diffusion, ripening, sintering, and other unwanted physicochemical changes that can plague these materials. Here we use low-temperature atomic layer deposition (ALD) to infill conductive PbSe NC solids with metal oxides to produce inorganic nanocomposites in which the NCs are locked in place and protected against oxidative and photothermal damage. Infilling NC field-effect transistors and solar cells with amorphous alumina yields devices that operate with enhanced and stable performance for at least months in air. Furthermore, ALD infilling with ZnO lowers the height of the inter-NC tunnel barrier for electron transport, yielding PbSe NC films with electron mobilities of 1 cm2 V(-1) s(-1). Our ALD technique is a versatile means to fabricate robust NC solids for optoelectronic devices.  相似文献   

5.
We report here combined quasi-hydrostatic high-pressure small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) studies on faceted 3D supercrystals (SCs) self-assembled from colloidal 7.0 nm spherical PbS nanocrystals (NCs). Diamond anvil cell (DAC) SAXS experiments in the pressure range from ambient to 12.5 GPa revealed nearly perfect structural stability of the SCs, with face-centered cubic organization of the NCs. Pressure-induced ordering (annealing effect) of the superstructure was observed. The ambient pressure bulk modulus of the SCs was calculated to be ~5 GPa for compression and ~14.5 GPa for decompression from fitting of Vinet and Birch-Murnaghan equations of state. XRD measurements revealed strong preferential crystallographic orientation of the NCs through all phase transformations to as high as 55 GPa without any indication of NC sintering. The first phase transition pressure of the NCs was found between 8.1 and 9.2 GPa and proceeds through homogeneous nucleation. Bulk modulus of PbS NCs was calculated to be ~51 GPa based on fitting to the equations of state (K(PbS,bulk) ~ 51-57 GPa). Closest surface-to-surface distance between the NCs in the SCs was calculated based on combined XRD and SAXS data, to reversibly tune from ~1.56 nm to ~0.9-0.92 nm and back to ~1.36 nm in the ambient-12.5 GPa-ambient pressure cycle. The bulk modulus of the ligand matrix was extrapolated to be ~2.2-2.95 GPa. These results show a general method of tuning NC interactions in packed nanoparticle solids.  相似文献   

6.
Halide perovskite (CsPbX3, X = Cl, Br, or I) quantum dots have received increasing attention as novel colloidal nanocrystals (NCs). Accurate control of emission bands and NC morphologies are vital prerequisites for most CsPbX3 NC practical applications. Therefore, a facile method of synthesizing CsPbX3 (X = Cl, Br, or I) NCs in the nonpolar solvent octane was developed. The process was conducted in air at ~ 90 °C to synthesize high-quality CsPbX3 NCs showing 12–44 nm wide emission and high photoluminescence quantum yield, exceeding 90%. An in situ anion-exchange method was developed to tune CsPbX3 NC photoluminescence emission, using PbX2 dissolved in octane as the halide source. NC morphology was controlled by dissolving specific metal–organic salts in the precursor solution prior to nucleation, and nanocubes, nanodots, nanosheets, nanoplatelets, nanorods, and nanowires were obtained following the same general method providing a facile, versatile route to controlling CsPbX3 NC emission bands and morphologies, which will broaden the range of CsPbX3 NC practical applications.
  相似文献   

7.
Yang B  Zhang J  Cui Y  Wang K 《Applied optics》2011,50(31):G137-G141
Mn-doped nanocrystals (NCs) have attracted much attention for their excellent properties. In our work, colloidal Mn-doped NCs with high quantum yield are synthesized and enveloped with silica hydrosol. The blend of NCs and silica hydrosol is coated on a blue light-emitting diode (LED), and the appropriate thickness of the NC film is found. White light is gained through the mix of the blue emission of the LED and the orange emission from Mn-doped NC films. The chromaticity coordinates and the image of the white LED indicate that Mn-doped NCs can be a good substitute for YAG:Ce phosphor, and the reliability of the white LED can be improved by enveloping NCs with SiO(2).  相似文献   

8.
Low‐cost solution‐processed lead chalcogenide colloidal quantum dots (CQDs) have garnered great attention in photovoltaic (PV) applications. In particular, lead selenide (PbSe) CQDs are regarded as attractive active absorbers in solar cells due to their high multiple‐exciton generation and large exciton Bohr radius. However, their low air stability and occurrence of traps/defects during film formation restrict their further development. Air‐stable PbSe CQDs are first synthesized through a cation exchange technique, followed by a solution‐phase ligand exchange approach, and finally absorber films are prepared using a one‐step spin‐coating method. The best PV device fabricated using PbSe CQD inks exhibits a reproducible power conversion efficiency of 10.68%, 16% higher than the previous efficiency record (9.2%). Moreover, the device displays remarkably 40‐day storage and 8 h illuminating stability. This novel strategy could provide an alternative route toward the use of PbSe CQDs in low‐cost and high‐performance infrared optoelectronic devices, such as infrared photodetectors and multijunction solar cells.  相似文献   

9.
Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.  相似文献   

10.
Alkyl‐terminated silicon nanocrystals (Si NCs) are synthesized at room temperature by hydride reduction of silicon tetrachloride (SiCl4) within inverse micelles. Highly monodisperse Si nanocrystals with average diameters ranging from 2 to 6 nm are produced by variation of the cationic quaternary ammonium salts used to form the inverse micelles. Transmission electron microscopy imaging shows that the NCs are highly crystalline, while FTIR spectra confirm that the NCs are passivated by covalent attachment of alkanes, with minimal surface oxidation. UV‐vis absorbance and photoluminescence spectroscopy show significant quantum confinement effects, with moderate absorption in the UV spectral range, and a strong blue emission with a marked dependency on excitation wavelength. The photoluminescence quantum yield (Φ) of the Si NCs exhibits an inverse relationship with the mean NC diameter, with a maximum of 12% recorded for 2 nm NCs.  相似文献   

11.
R Graham  D Yu 《Nano letters》2012,12(8):4360-4365
Ultrathin colloidal lead selenide (PbSe) nanowires with continuous charge transport channels and tunable bandgap provide potential building blocks for solar cells and photodetectors. Here, we demonstrate a room-temperature hole mobility as high as 490 cm(2)/(V s) in field effect transistors incorporating single colloidal PbSe nanowires with diameters of 6-15 nm, coated with ammonium thiocyanate and a thin SiO(2) layer. A long carrier diffusion length of 4.5 μm is obtained from scanning photocurrent microscopy (SPCM). The mobility is increased further at lower temperature, reaching 740 cm(2)/(V s) at 139 K.  相似文献   

12.
In this study, the yellow emitting cubic structure of Sr0.95Zn0.05Se:Eu2+ phosphors were prepared by high temperature solid state reaction. The Sr0.95Zn0.05Se:Eu2+ phosphors exhibited strong excitation intensity under 400-460 nm region, and broad band emission appeared at around 545-600 nm due to the d-f transition of Eu2+. To enhance the red emission, HDA/TOP/TOPO capped CdSe/ZnS NCs were synthesized via fast nucleation and slow growth method. The narrow emission peak was located at 615 nm with 69% of high quantum yield. Bright white emission was generated by combining a 460 nm InGaN LED chip with CdSe/ZnS NCs and Sr0.95Zn0.05Se:Eu2+ hybrid phosphors. The fabricated white LEDs showed warm white light with acceptable CIE chromaticity coordinate variation from (0.343, 0.255) at 20 mA to (0.335, 0.250) at 50 mA. The addition of CdSe/ZnS NCs contributed to the extension of white light spectrum by supplement of the red region. The color rendering index was largely enhanced from 41.7 to 79.7 compared to the Sr0.95Zn0.05Se:Eu2+ based phosphors white LED.  相似文献   

13.
Water-soluble thioglycolic acid-capped CdSe nanocrystals (NCs) were prepared in aqueous solution at room temperature. We investigated the effects of pH values on the fluorescence intensity of the as-prepared CdSe NCs, and discussed the influence of the initial pH values on the fluorescence property. Their mean diameter was estimated to be 1.9 nm depending on the initial pH values in the preparation, the photoluminescence quantum yield could reach as high as 1.9%, almost comparable to the CdSe NCs prepared by an organometallic route. Finally, the products were characterized by Fourier transform infrared spectrometry (FTIR), atomic force microscope (AFM) and X-ray powder diffraction (XRD). AFM image showed that the NCs were ball-shaped with good dispersibility. XRD analysis disclosed that the CdSe NCs were of cubic zinc-blended structure.  相似文献   

14.
We report magnetoresistance of -40%, corresponding to 80% spin polarization, at magnetic field of 0.5 T and 200 K for oleic acid-coated Fe(2.5)Mn(0.5)O(4) nanocrystals (FMO NCs) self-assembled on a SiO(2)/Si substrate by drop casting fabrication. The FMO NCs exhibited spin glass transition around 150 K and nonlinear current-voltage (I-V) characteristics. Fowler-Nordheim plot of the I-V characteristics indicated that electrons tunnel directly barriers between the FMO NCs. Transmission electron microscopy revealed that the FMO NCs are elongated hexagon in shape with size of ~15 × 20 nm. The FMO NCs self-assembled in two-dimension hexagonal networks of collinear ferromagnetic moments. The [111] easy magnetization axis of each FMO NC was parallel to each other in the hexagonal arrays. Geometrically frustrated lattice of collinear ferromagnetic moments supports both a low and a high intergranular tunneling conductance for the self-assembled FMO NCs without and with magnetic fields, respectively.  相似文献   

15.
A new phosphine-free approach has been developed to synthesize high-quality cadmium selenide (CdSe) nanocrystals with cubic zinc-blende structure, by using the highly reactive selenium (Se) precursor at milder temperature than that used in the traditional phosphine route. This Se precursor was obtained from the reduction of Se powder by sodium borohydride in N,N-dimetbylformamide, in the absence of phosphine. Without the addition of other long-chain coordinating substances in this approach, the alkylamines such as dodecylamine (DDA) and octylamine (OA) were used as reaction solvents, and they also acted as surface capping reagents to produce DDA-capped and OA-capped CdSe NCs, respectively. The rapid nucleation and slow growth were observed by ultraviolet-visible absorption spectrum. The resulting OA-capped CdSe NCs grew faster compared with DDA-capped CdSe NCs under the same other conditions. These as-synthesized CdSe nanocrystals showed relatively narrow size distribution and high photoluminescence quantum efficiency (up to 9.4% for OA-capped CdSe NCs). This mild approach is low cost, relatively low danger and high production yield (approximately 80%), indicating that it is very effective for the phosphine-free synthesis of alkylamine-capped CdSe nanocrystals.  相似文献   

16.
Deng Z  Tang F  Muscat AJ 《Nanotechnology》2008,19(29):295705
Single-crystalline bismuth oxychloride (BiOCl) nanoplates with in-plane sizes of 200-500?nm and a thickness of 15-25?nm are synthesized by a simple solution route. Strong blue photoluminescence centred at 455?nm (~2.72?eV) with very high quantum yields (Φ(PL)~0.4) has been observed at room temperature, representing the first report of strong room temperature photoluminescence from bismuth oxyhalide nanomaterials. It is envisaged that bismuth oxychloride could join the family of non-cadmium based high-efficiency emitters; it has promising applications in various fields, especially in light emitting diodes, lasers and solar cells.  相似文献   

17.
Highly stable water-soluble CdSe nanoclusters (NCs) with magic size were successfully synthesized using homocysteine (HCY) as capping ligands. Their sizes were tunable between 1.2 and 2.0 nm depending on reflux time. The final products were characterized by UV-vis absorption, steady and time-resolved photoluminescence (PL) spectra, X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). XRD analysis showed that the HCY-capped CdSe NCs were of the cubic structure, UV-vis absorption spectra and HRTEM micrograph exhibited that the NCs were nearly monodisperse and relatively uniform. The as-prepared CdSe NCs had a PL quantum yield of up to 1.4%, almost comparable to the CdSe magic sized clusters prepared by an organometallic route.  相似文献   

18.
The saturable optical absorption properties of PbSe core nanocrystals (NCs), and their corresponding PbSe/PbScore/shell and PbSe/PbSexS(1-x) core/alloyed-shell NCs, were examined at lambda = 1.54 microm. Saturation intensities of approximately 100 MW/cm2 were obtained. The NCs act as passive Q switches in near-infrared pulsed lasers. Q-switched output pulse energies up to 3 mJ, with a pulse duration of 40-55 ns were demonstrated. Analysis of the optical transmission versus pulse light intensity was carried out according to a model that includes ground-state as well as excited-state absorption. For pulses approximately 10 ns long, the NCs act as fast saturable absorbers. The theoretical fits yield a ground-state absorption cross section of 10-16-10-15 cm2, an excited-state absorption cross section of sigma(es) is congruent to 10(-16) cm2, and an effective lifetime of tau(eff) is congruent to 5 x 10(-12) s.  相似文献   

19.
Materials with emission over the whole visible range (400–800 nm) have been obtained through incorporating single-colored CdTe nanocrystals (NCs) into a poly(p-phenylene vinylene) (PPV) precursor [the sulfonium polyelectrolyte precursor of PPV]. Firstly, the quantum yield (QY) of the PPV precursor was improved to ~50% via heat treatment of a mixed solution of the PPV precursor and poly(vinyl alcohol) (PVA) at 100 °C for 3 min. Then, single-colored CdTe NCs were incorporated into the mixed solution. The introduction of the PVA was necessary to reduce the electrostatic interaction between the PPV precursor and CdTe NCs, which improved their compatibility. The reduced electrostatic interaction eliminated Förster resonance energy transfer (FRET) processes between NCs, as well as between NCs and the PPV precursor, which allowed the functional integration of the polymer and NCs. Consequently, polymer/NC composites with almost any Commission Internationale de L’Eclairage (CIE) coordinates can be achieved by simply changing the size and amount of the NCs. In particular, when the emission wavelength of the CdTe NCs was 559 nm, a pure white-light emitting material with CIE coordinates (0.337, 0.332) was obtained.
  相似文献   

20.
Low-power photon upconversion (UC) based on sensitized triplet–triplet annihilation (sTTA) is considered as the most promising upward wavelength-shifting technique to enhance the light-harvesting capability of solar devices. Colloidal nanocrystals (NCs) with conjugated organic ligands have been recently proposed to extend the limited light-harvesting capability of molecular absorbers. Key to their functioning is efficient energy transfer (ET) from the NC to the triplet state of the ligands that sensitize free annihilator moieties responsible for the upconverted luminescence. The ET efficiency is typically limited by parasitic processes, above all nonradiative hole-transfer to the ligand highest occupied molecular orbital (HOMO). Here, a new exciton-manipulation approach is demonstrated that enables loss-free ET by electronically doping CdSe NCs with gold impurities that introduce a hole-accepting intragap state above the HOMO energy of 9-anthracene acid ligands. Upon photoexcitation, the NC photoholes are rapidly routed to the Au-level, producing a long-lived bound exciton in perfect resonance with the ligand triplet. This hinders hole-transfer leading to ≈100% efficient ET that translates into an upconversion quantum yield as high as ≈12% (≈24% in the normalized definition), which is the highest performance for NC-based upconverters based on sTTA to date and approaches the record efficiency of optimized organic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号