首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
溶胶共沉淀过程pH值的确定   总被引:4,自引:0,他引:4  
研究了如何确定溶胶共沉淀过程中最佳pH的范围。结果表明,用NH4 HCO3作ZrOCl2·8H2O与Y(NO3)3混合溶液的沉淀剂,进行溶胶共沉淀时的最佳pH值范围是5~6。  相似文献   

2.
湿法制备羟基磷灰石生物活性陶瓷粉末的热力学分析   总被引:4,自引:0,他引:4  
本文对制备羟基磷灰石的Ca(NO3)2-(NH4)2HPO4-NH4OH-H2OL体系进行热力学分析。计算求得HA沉淀最宜pH条件为10.6-12.4,热力学计算与实验结果和文献报告数据结果一致。  相似文献   

3.
溶胶共沉淀法制备ZrO2超细粉末的工艺研究   总被引:14,自引:2,他引:12  
李春花  娄彦良 《功能材料》1997,28(3):303-306
采用正交试验方法研究了溶胶共沉淀法制备ZrO2-Y2O3陶瓷粉末的工艺过程,对粉体进行了粒度,XRD,SEM观察,结果表明,对粉体粒度影响最大的是母液浓度,而母液温度则无明显影响,母液pH值不同影响ZrO2的晶体,正交试验优化出了用NH4HCO3作为沉淀剂制备了ZrO2粉末的最佳工艺参数,即:母液浓度1.0mol/L,pH=5~6事实表明,用此法制粉成本低,周期短,效率高。  相似文献   

4.
化学共沉淀法制备纳米级CaTiO3粉体   总被引:2,自引:0,他引:2  
彭子飞  汪国忠 《功能材料》1996,27(5):429-430
本文以H2TiO3、H2O2、NH3、Ca(NO3)2为主要原料,用化学共沉淀法制备了纳米级CaTiO3。确定了反应物H2TiO3、H2O2、NH3的最佳摩尔比为1:8:2。用不同的退火温度和退火时间对样品处理得到相应粒径的纳米粉体,再用X-ray和透射电镜对这些粉体进行了评估。  相似文献   

5.
研究了n-β(氨乙基)-γ(氨丙基)三乙氧基硅烷(NH2(CH2)2NH(CH2)3Si(OEt)3)与二甲基二乙氧基硅烷(CH3)2Si(OEt)2)共水解,制备含(CH2)3NH(CH2)2NH2功能基的聚硅氧烷配位体,用IR,^1HNMR和元素分析法对水解产物分析证明,NH2(CH2)2NH(CH2)3Si(OEt)3与(CH3)2Si(OEt)2进行了共水解反应,而且水解程度随NH2(CH  相似文献   

6.
本文利用水热合成方法对MSnO3和MSn(0.5)Zr(0.5)O3(M=Sr,Ba)的合成进行了研究,并采用XRD、SEM和ICP等方法对产物进行了表征,结果表明:在M(OH)2-SnO2(或SnO2+ZrO2)-KOH体系中,当KOH/Sn和KOH/(Sn+Zr)≥30时,260℃下晶化5~7天,可获得MSnO3和MSn(0.5)Zr(0.5)O3纯相,在M(OH)2-(SnO2+ZrO2)-KOH-H2O体系中,可通过控制介质碱度来获得MSnO3+MZrO3混合物和MSn(0.5)Zr(0.5)O3,并根据合成规律初步探讨了反应过程.  相似文献   

7.
本文利用水热合成方法对MSnO3和MSn0.5Zr0.5(M=Sr,Ba)的合成进行了研究,并采用XRD、SE几ICP等进行产物进行了表征,结果表明:在M(OH)2.SnO2(呈SnO2+ZrO2)-KOH体系中,当KOH/Sn和KOH(Sn+Zr)≥30时,260℃下晶化5-7天,可获得MSnO3和MSn0.5O3纯相,在M(OH)3-(SnO2+ZrO3)-KOH-H2O体系中,可通过控制介质  相似文献   

8.
本文以SiCl4-NH3、SiCl4-O2、SiCl4-N2-H2、TiCl4-NH3-H2、TiCl4-N2-H2、TiCl4-O2、AlCl3-O2等为体系,运用均匀成核理论,研究了平衡常数Kp、过饱和比S及临界核半径,r*等因素对气相反应法中超细粉末的形成及粉末结构状态的影响.结果表明,当2r*大于某物质的晶格常数时,用气相反应法得到的该物质的超细粉末一般为晶体粉末,反之则得到无定形粉末.  相似文献   

9.
尽管升华方法在除去氧化物方面很有成效,但也必须注意ZrF4和HfF4的水解温度和脱水温度.由于升华方法不能有效地除去象FeF3等氟化物杂质.作者根据FeF63-,CoF63-是属于外轨道络合物,它们是不稳定的和容易离解出Fe3+和CO3+,同时FeZrF6·6H2O也易于离解出Fe2+,以致使(NH4)3ZrF7和(NH4)3HfF7可以用DDTC-CHCl3,在pH3~3.5的有效萃取成为可能.在ZrF4-HfF4的二元组分系统中,它们的升华、凝华过程是遵循图2的相平衡规律进行的.用XRD检测升华产品,为无水单斜态的ZrF4或HfF4晶体,用GFAAS检测,升华前后Fe含量各自为0.8ppm和0.5ppm,批生产量250g.  相似文献   

10.
提出了乳状液膜体系自湿法冶锌系统中经一级同时分离镓和锗的新方法,建立了用P204和C5-7羟肟酸协同载体,pH=3.2的NH4F溶液为内水相试剂,使Ge^4+以溶液状态而Ga^3+则以Ga(OH)3沉淀同步迁移进入内水相并分别回收的液膜体系,研究了影响Ga^3+、Ge^4+迁移的各种因素,经正交实验确定了分离镓和锗的最佳液膜组成及操作条件,并用加入铁粉法除去了杂质Fe^3+和Cu^2+对Ga^3+  相似文献   

11.
Decolorization of C.I. Reactive Red 2 by catalytic ozonation processes   总被引:2,自引:0,他引:2  
This study adopted O3, UV/TiO2/O3, O3/Mn(II) and O3/MnO2 systems to assess the decolorization efficiency of C.I. Reactive Red 2 (RR2). The decolorization rate increased with concentrations of Mn(II) and MnO2 in the ranges 0.05-0.1 and 0.05-0.8 g/l, respectively. However, when 0.5-3g/l TiO2 was added, the effect of TiO2 dosage for RR2 decolorization was insignificant in the UV/TiO2/O3 system. At pH 2, the decolorization rate constants of O3, O3/Mn(II) (0.05 g/l), O3/Mn(II) (0.1g/l), O3/Mn(II) (0.15 g/l), O3/MnO2 (0.05 g/l) and O3/MnO2 (0.8 g/l) were 0.816, 2.001, 3.173, 3.087, 1.040 and 1.648 min(-1), respectively. After 5 min of reaction, the decolorization rates followed the order O3/Mn(II)>O3/MnO2>O3>UV/TiO2/O3; however, the TOC removal did not vary among these systems. Adding ethanol reduced the decolorization rate of the UV/TiO2/O3 and O3/MnO2 systems and did not affect the decolorization rate of O3/Mn(II). Decolorization in UV/TiO2/O3, O3/Mn(II) and O3/MnO2 systems is suggested to proceed by mainly radical-, surface- and radical-type mechanisms, respectively. Additionally, direct ozonation cannot be ignored in O3/Mn(II) and O3/MnO2 systems.  相似文献   

12.
陈建亚 《福建分析测试》2004,13(2):1974-1975
本文报道一个快速和比较准确的锰黄铜溶样方法,采用HCl-H2O2溶解试样,然后,加入硫、磷混合酸.加热至冒硫酸烟驱赶盐酸。以AgNO3为催化剂,用(NH4)S2O8将锰氧化成七价,用亚砷酸钠一亚硝酸钠标准溶液滴定,获得满意测定结果。  相似文献   

13.
为了精确控制共沉淀包膜法制备掺杂TiO2粉体的反应条件,本文通过对Men+(Ni2+、La3+、Fe3+、Al3+)在NaHCO3-NH3.H2O体系中离子沉淀反应平衡的热力学分析,得到了Men+-CO32--NH3.H2O体系中不同总氨浓度cN和总碳浓度cC时各金属离子总浓度与pH值的关系图,并由此确定了金属离子完全沉淀的最佳pH值.热力学分析表明,以NaHCO3-NH3.H2O作为沉淀剂,采用共沉淀包膜法制备掺杂TiO2粉体时,当cN=0.010 mol/L和cC=1.000 mol/L时,反应的适宜沉淀pH为9.0左右.  相似文献   

14.
This study elucidates the decolorization of C.I. Reactive Red 2 (RR2) by homogeneous catalytic ozonation. The effects of pH and catalyst dosage were evaluated in O3/Mn(II), O3/Fe(II), O3/Fe(III), O3/Zn(II), O3/Co(II) and O3/Ni(II) systems. In O3/Mn(II), O3/Fe(II) and O3/Fe(III) systems, increasing the catalyst concentration increased the rate of RR2 decolorization; however, further increasing the catalyst concentration caused no further significant increase. When 0.6 mM catalyst was added, the decolorization rates of O3/Mn(II), O3/Fe(II), O3/Fe(III), O3/Zn(II), O3/Co(II) and O3/Ni(II) systems at pH 2 were 3.295, 1.299, 1.278, 1.015, 0.843 and 0.822 min(-1), respectively. Under all of the experimental conditions, the decolorization efficiency of catalytic ozonation exceeded that of ozonation alone. The decolorization rate markedly exceeds the TOC removal rate in all tested systems. The effect of the radical scavenger on the catalytic ozonation processes suggests that the decolorization reaction in catalytic ozonation systems proceeds by mainly radical-type mechanisms, except in the O3/Mn(II) system.  相似文献   

15.
Karaoğlu  E.  Deligöz  H.  Sözeri  H.  Baykal  A.  Toprak  M. S. 《纳微快报(英文)》2011,3(1):25-33
Nano-Micro Letters - Here, we report on the synthesis of PEG-Mn3O4 nanocomposite (NP’s) via a hydrothermal route by using Mn(acac)2, ethanol, NH3 and PEG-400. The crystalline phase was...  相似文献   

16.
以CH3COOLi·2H2O、V2O5、Mn(CH3COO)2·4H2O、(NH4)2HPO4和蔗糖为原料,采用溶胶–凝胶法合成了掺锰磷酸钒锂/碳(Li3V2-2x/3Mnx(PO4)3/C)复合正极材料,用XRD、XPS、SEM、电化学性能对样品进行了表征.测试结果表明,少量锰的掺杂并未改变Li3V2(PO4)3/C的单斜结构,Li3V1.94Mn0.09(PO4)3中的Mn和V分别以+2和+3价存在,其颗粒类似球形,直径比较均匀且小于200 nm,并表现出良好的电化学性能.在0.1C倍率和3.0~4.8 V电压内,该样品的首次充、放电容量分别为182.1和168.8 mAh/g,放电效率高达92.69%,而且100次循环后,其放电比容量仍是首次放电容量的77.4%.  相似文献   

17.
The phase relations in rare earth–Mn–O systems in air are considered. Most of the phase diagrams of these systems fall into two distinct groups: R"–Mn–O (R" = Y, Ho–Lu) and R"–Mn–O (R" = Pr, Nd, Sm–Dy). In addition, the Sc–Mn–O, La–Mn–O, and Ce–Mn–O systems have phase-diagram features of their own. The Ce–Mn–O system contains no ternary oxides or solid solutions: there are only mixtures of cerium and manganese oxides. The Sc–Mn–O system has phase-diagram features in common with both the R"–Mn–O and M–Mn–O (M = Mg, Al, 3d transition metal) systems. The La–Mn–O phase diagram can be thought of as a degenerate diagram of the R"–Mn–O group, since LaMn2O5 exists at oxygen pressures higher than atmospheric pressure. The R"–Mn–O and R"–Mn–O systems contain two chemical compounds, RMnO3 and RMn2O5, but differ in the crystal structure of RMnO3: hexagonal in the R" group and orthorhombic perovskite-like in the R" group. A key role in determining the structure of RMnO3 is played by the size factor. In both groups, the RMn2O5 compounds dissociate in air by the reaction \({\text{RMn}}_{\text{2}} {\text{O}}_{\text{5}} {\text{ = RMnO}}_{\text{3}} + \frac{1}{3}{\text{RMn}}_{\text{3}} {\text{O}}_{\text{4}} + \frac{1}{3}{\text{O}}_{\text{2}} \). The dissociation temperature of RMn2O5 is shown to correlate with the atomic number of R, the total number of 4f electrons, the number of unpaired 4f electrons, and the ionic radius of R3+.  相似文献   

18.
在NH_3·H_2O—NH_4Cl—三乙醇胺底液中Fe(Ⅲ)与PAN—S产生一灵敏的配合吸附波,峰电位在—0.50伏(vs.SCE)。峰电位与铁离子浓度在2.8×10~8~3.4×10~(-6)mol/L范围内线性良好,检出下限可达2.8×10~(-8)mol/L。该法用于乳粉、头发、血清等样品的测定,结果满意。  相似文献   

19.
以NaCO3为沉淀剂,NH3·H2O为缓冲溶液,将NiSO4、CoSO4和MnSO4混合溶液共沉淀制备(Ni1/3Co1/3Mn1/3)CO3前驱体,将其在400-900℃热处理5h制备得(Ni1/3Co1/3Mn1/3)Ox氧化物。EDTA络合滴定、BET、XRD及SEM研究表明,随着热处理温度的升高,(Ni1/3Co1/3Mn1/3)Ox中过渡金属含量及结晶度随着增加,而比表面积却减小。(Ni1/3Co1/3Mn1/3)Ox与LiOH混合后在850℃热处理24h制备出LiNi1/3Co1/3Mn1/3O2材料,其结构、形貌及电性能的测试结果表明,前驱体在600℃条件下热处理制备的正极材料电化学性能最佳,其首次放电比容量为189.7mAh·g^-1,不同倍率循环60周后,循环保持率为92.4%。  相似文献   

20.
以氨水为络合剂,NaOH为沉淀剂,通过共沉淀制备了高致密、粒度均匀的球形前驱体Ni0.8Co0.1Mn0.1(OH)2.通过焙烧该前驱体和LiOH.H2O的混合物制备出球形锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2.采用XRD、SEM、TEM、TGA/DSC以及恒流充放电测试对材料的结构、形貌和电化学性能进行表征.结果表明,球形前驱体是由纳米级一次颗粒团聚形成,而不是晶粒的长大,且反应时间对前驱体的形貌、粒径分布及振实密度有显著影响.750℃焙烧16 h后的正极材料,保持了完好的球形形貌,具有最佳的层状结构和电化学性能,振实密度最大(2.98 g/cm3),首次放电容量为202.4 mAh/g,倍率性能佳,在3C的放电电流下容量为174.1 mAh/g,且循环性能优良,在40次循环以后,放电容量保持率为92.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号