首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
多晶形变总是不均匀的,不同取向晶粒内激活的滑移系数目不同,微观组织也有差异.这种差异对随后的动(静)态再结晶或相变有不同的影响.本文利用取向成像确定了低碳钢单向压缩条件下浸蚀后在光学镜和扫描电镜下观察到的铁素体晶粒灰度与取向的关系.测出了压缩形变后的主要织构〈111〉和〈100〉取向晶粒内形变不均匀性的差异.同时讨论了形变造成被压碎的珠光体团周围铁素体亚晶转动较快、进而促进动态再结晶的现象.  相似文献   

2.
采用晶体塑性有限元模拟与实验相结合的方式,研究无取向硅钢冷轧过程中不同初始织构组分的取向流动与形变储能累积。结果表明:冷轧后形成了较强的α,γ形变织构和较弱的λ形变织构。再结晶织构由γ,α,η和λ织构组成,其取向密度依赖于冷轧压下率。随冷轧压下率增大,λ再结晶织构逐渐增强,η织构先增强后减弱,γ织构先减弱后增强,α织构稍有弱化。冷轧过程中形变储能累积具有明显的初始取向依赖性,初始γ取向储能累积速率在低于50%压下率时与初始α取向接近,高于50%压下率时则明显大于后者,初始λ取向储能累积速率始终显著低于γ和α取向,转至同一形变取向的不同初始取向间的储能累积也会产生差异。冷轧过程中不同初始织构组分的取向流动与形变储能累积规律,决定了无取向硅钢再结晶织构组分的发展。  相似文献   

3.
低碳钢形变强化相变时铁素体织构类型的分析   总被引:2,自引:0,他引:2  
利用背散射电子衍射取向成像技术分析了在热模拟单向压缩条件下Q235碳素钢形变强化相变时铁素体织构的类型。结果表明,在利用形变强化相变实现铁素体的超细化过程中会出现铁素体的相交织构和形变织构,在大应变条件下还会出现动态再结晶织构。在形变强化相变后细晶铁素体在整体上表现为以〈111〉方向为主的线织构。主要的相交织构在粗晶奥氏体内部形变带形核时产生并与〈111〉织构对应。形变织构是在形变时形成的铁素体受到继续变形所致,在形变强化相变过程中及完成后都会产生,对应〈111〉及〈100〉方向的线织构,随着形变的加大,〈100〉方向的织构增加得更快,形变温度的降低有利于形变织构的加强。在形变量很大且形变温度比较合适时(但不能过低)会发生铁素体的动态再结晶,它以连续的方式进行,导致形变织构的进一步加强,并使晶粒均匀细化。  相似文献   

4.
利用EBSD技术对比分析了升温速率对冷轧超薄取向硅钢再结晶行为的影响.结果表明,冷轧超薄带中再结晶形核位置、再结晶织构类型受升温速率的影响不大,主要取决于形变组织;剪切带、{111}〈112〉取向晶粒晶界、形变带和形变不均匀区均为再结晶的形核位置,剪切带的再结晶形核优势更为明显;再结晶晶粒取向以Goss({110}〈001〉)取向为主,同时存在{210}〈001〉、{310}〈001〉以及一定比例的杂乱取向.然而,升温速率显著影响Goss织构的强度及退火样品的组织均匀性;慢速升温条件下,Goss织构比例和锋锐度降低,说明回复导致不同织构的形变组织储存能差异减小,降低了Goss取向的形核优势;快速升温条件下,剪切带内的Goss晶核具有更大的形核优势,吞并临近的形变组织完成再结晶,形成更强和锋锐的Goss织构.此外,快速升温可提高再结晶完成后的组织均匀性、降低平均晶粒尺寸.  相似文献   

5.
利用X射线衍射织构分析技术和电子背散射衍射微织构分析技术,对0.20mm CGO硅钢薄板在高温退火缓慢升温过程中表层和次表层的织构演变规律进行了研究。结果表明:0.20mm CGO硅钢在高温退火过程中经历了低温回复、初次再结晶、初次再结晶晶粒长大和二次再结晶形成最终锋锐Goss织构的演变过程。Goss取向晶粒最初起源于变形回复基体中残存于{111}〈112〉形变带上少量的Goss晶粒亚结构,600℃保温2h后,Goss取向晶粒率先从变形基体中转变形核,在随后的升温过程中逐渐发生再结晶,Goss取向晶粒在此过程中并不具有尺寸优势,700℃时初次再结晶完成,基体中以γ纤维织构和{112}〈110〉织构为主;随着退火温度的升高,Goss晶粒的含量和平均晶粒尺寸逐渐增加,在900~1000℃之间,Goss取向晶粒迅速"吞噬"其他取向晶粒形成锋锐的Goss织构,1000℃时已经发生了二次再结晶。  相似文献   

6.
Q235碳素钢应变强化相变中铁素体的取向特征   总被引:9,自引:2,他引:7  
利用背散射电子衍射取向成像技术分析了在热模拟单向压缩条件下Q235碳素钢应变强化相变中铁素体晶粒的取向(差)变化特点。结果表明,奥氏体的状态影响应变诱导出的铁素体的取向,奥氏体的动态再结晶使应变诱导出的铁素体的取向随机分布,在铁素体的内部基本上没有小角晶界,随着形变温度的降低和应变量的增大,铁素体取向的择优性变强,铁素体内部的小角晶界增加,这是细小铁素体动态再结晶的表现,相变,形变以及铁素体的动态再结晶都影响<111>方向线织构的形成。  相似文献   

7.
利用背散射电子衍射分析技术(EBSD)和取像显微分析技术(OIM),通过定量测量变形镁合金AZ80A搅拌摩擦焊搭接接头的焊核区晶粒取向和织构,探讨了搅拌摩擦焊焊核区形成的微观过程.结果表明:AZ80A合金在搅拌摩擦焊过程中,存在塑性变形和动态再结晶两种微观过程,导致焊核区所形成的晶粒织构密度不强、取向呈多样化的趋势;晶粒为再结晶细晶粒;在焊核区,变形织构{1,-1,0,4}<1,0,-1,0>略偏离板法向20°,且随板厚方向向下越来越强,同时再结晶取向越来越多;焊核区晶粒继承了母材中的{1,-1,0,4}<1,0,-1,0>变形织构,在焊核区所发生的动态再结晶含有一定程度的原位再结晶.  相似文献   

8.
总结了近年来冷轧无取向硅钢再结晶组织和织构演变的研究进展,重点总结了快速加热条件下再结晶组织和织构的研究进展.快速加热抑制回复,使再结晶发生前的剩余形变储能增加,导致形核驱动力增加并促进大角晶界迁移,因而使形核率增加、晶粒细化.同时,快速加热降低了晶核择优位向,最终降低了<111>//ND再结晶织构组分强度.  相似文献   

9.
低碳钢热变形过程中铁素体的织构形成规律   总被引:2,自引:0,他引:2  
利用背散射电子衍射取向成像技术定量分析了热模拟单向压缩条件下Q235碳素钢热变形时铁素体的织构形成规律。结果表明,在710℃纯铁素体热压缩过程中,形成〈100〉和〈111〉方向的线织构。〈111〉方向织构增强的速度较快,到应变为1.0时达最大值,然后随应变的加大而减弱;〈100〉方向织构在形变量较小时增强的速度较慢,在大应变时增强的速度很快。大应变时虽导致一定程度的动态再结晶,使铁素体晶粒细化,但组织不均匀,织构过强,造成强烈的各向异性。在奥氏体与铁素体两相区变形时,先共析铁素体因形变同样产生强烈的织构。随着形变温度的提高和先共析铁素体的减少,织构减弱。  相似文献   

10.
采用大变形技术"挤压-剪切"(Extrusion-shear,ES)工艺挤压AZ31镁合金并研究其组织和织构演变.结果表明:经ES工艺挤压后能得到细小均匀的再结晶晶粒;其宏观组织内存在多种类型的织构,削弱了基面织构的主导地位;由极图可知{0002}基面织构强度下降,ES工艺的再结晶机制是连续动态再结晶.  相似文献   

11.
The microstructural and textural evolution of pure titanium during differential speed rolling (DSR) at 500 °C and subsequent annealing were investigated using electron backscattered diffraction analysis. Twinning only occurs in the initial stage of DSR, and further deformation is dominated by dislocation slip. The as-rolled microstructure is characterized by large deformed grains, which form a major component of the material, and some dynamically recrystallized (DRXed) grains mainly existing in shear band regions. A dramatic change in the rolling texture, from the transverse direction (TD) split texture with basal poles largely tilted at ±40° to the single-peak basal texture, occurs during DSR. This change in texture is accelerated during the late stage of DSR and may be attributed to the gradual lattice rotation of deformed grains caused by enhanced basal slip activity. The basal texture changes back to the TD-split texture with basal poles tilted at ±25° after annealing due to consumption of deformed grains with basal orientations from DRXed grains with the TD-split texture. Subsequent extensive grain growth changes the orientation of the a-axis from parallel to the TD to parallel to the rolling direction, which is the result of the preferential grain growth in that direction.  相似文献   

12.
In this work, the grain refinement and texture weakening in the sheets of AZ31 magnesium alloy were studied by means of bidirectional cyclic bending for 6 passes at 423 K and subsequent static recrystallization (SRX) on two annealing conditions. The deformed and annealed samples were examined by optical microscopy and electron backscatter diffraction analysis. The results showed that a gradient structure with fine grains in the regions near the surfaces and, in contrast, coarse grains in the middle of the sheet were induced. The texture of the annealed samples was dramatically weakened, and the intensity decreased gradually from the center of the sheet to two surfaces. The different SRX mechanisms significantly affected the different weakening for the basal texture. The cumulative strain energy achieved by twinning played a more important role in the formation of an asymmetric gradient texture intensity distribution after annealing at 523 K for 1000 s. On the contrary, thermal energy dominated a symmetric gradient under annealing at 573 K for 100 s because of the preferential growth of new grains produced by SRX. The ductility is enhanced outstandingly with no remarkable improvement for the strength.  相似文献   

13.
Hot deformation behavior of as-cast TX32 (Mg–3Sn–2Ca) alloy has been studied in uniaxial compression in the temperature and strain rate ranges of 300–500 °C and 0.0003–10 s?1 with a view to characterize the evolution of microstructure and texture. On the basis of the temperature and strain rate dependence of flow stress, a processing map has been developed and the crystallographic orientation information on the deformed specimens has been obtained from electron back scatter diffraction micro-texture analysis. The processing map revealed two domains of dynamic recrystallization in the temperature and strain rate ranges of (1) 300–350 °C and 0.0003–0.001 s?1 and (2) 390–500 °C and 0.005–0.6 s?1. Specimens deformed at peak in Domain 1 exhibited maximum intensity of basal poles located at about 35–45° to the compression axis while those deformed at peak in Domain 2 showed near-random texture. Schmid factor analysis of different slip systems operating in the two domains suggests that basal + prismatic slip causes the basal texture in Domain 1 while second-order pyramidal slip randomizes the texture in Domain 2.  相似文献   

14.
Synchrotron diffraction was used to construct the first 2D texture maps of entire magnesium AZ80 friction stir welds and showed that basal slip is favoured along most of the advancing side interface, and to a lesser extent on the retreating side interface. Zones of grains optimally oriented for basal slip are known to be a major contributor to strain localisation leading to failure during transverse tensile tests. Profilometry results confirm that the basal plane orientation dominates strain localisation. Microtexture maps traversing the weld interfaces were used to describe the material flow within the weld using scatter from the ideal shear texture fibre. The current results are highly applicable to modelling the strength and ductility of these joints under transverse loading.  相似文献   

15.
Texture evolution in 1050 commercial purity aluminum severely deformed by equal channel angular pressing (ECAP) is investigated by electron back scattered diffraction (EBSD). Pole figures and orientation distribution function (ODF) plots are generated for samples processed to 1, 2, 4, 8, 12 and 16 passes. The processing was done using route BC, in which the samples were rotated by 90° in the same sense between subsequent pressings. Two different sized scans were performed on the flow plane of the processed samples. The orientations constituting the favorably oriented fibers are depicted and crystal orientation maps are generated. The spatial distribution of grains having these orientations are revealed through these maps. The fraction of the main texture fibers for a 5° spread around the specified orientations is experimentally calculated and a quantitative idea on the evolution of texture is presented. The results ascertained that the texture intensity around the main fibers generally weakens with number of ECAP passes.  相似文献   

16.
Abstract

We report the annealing behaviours of nanocrystalline nickel as a function of plastic strain. A broad exothermic reaction due to primary and secondary recrystallisations appears in moderately deformed samples that are enhanced by plastic strain. Texture analysis shows that predeformation and recrystallisation play an important role in grain orientation. A certain difference in texture evolution exists in samples predeformed to different strains. Defects such as stacking faults and twinning should be considered to pin down the underlying mechanisms. The final grain orientation indicates that twinning plays an important role in grain growth due to orientation selection.  相似文献   

17.
进行变形速率可控的单向拉伸试验,研究了变形织构与滑移和孪生等协调变形机理对AZ31镁合金综合性能的影响。结果表明:在沿挤压方向拉伸过程中,变形织构使{0002}晶面Schmid因子较低,基面滑移难以开动,屈服强度高。在沿45°拉伸过程中,变形织构使柱面取向晶粒处于发生{0002}滑移的最佳位置,基面取向晶粒的棱柱面滑移也处于最佳位置,屈服强度低而延伸率高。沿横向拉伸的力学性能主要受孪晶影响,由于大量孪晶诱发裂纹,延伸率最低。试样在45°和横向拉伸时产生的大量拉伸孪晶,是出现{0002}双峰织构的诱因。  相似文献   

18.
采用异步轧制、多向异步轧制、高温异步轧制、高温多向异步轧制四种不同的方式轧制双相镁锂合金板材。通过光学显微镜、MTS E43拉伸试验机和X射线衍射仪观察不同工艺轧制后合金的显微组织、力学性能以及织构特征,综合分析温度和轧制方向条件耦合对镁锂合金组织和力学性能的影响。结果表明:四种轧制工艺可以使α-Mg相沿轧制方向伸长,同时沿着轧制方向法向细化。高温多向异步轧制后α相厚度最低为2.6μm。多向异步轧制后材料的屈服强度、抗拉强度、伸长率分别为149,167 MPa,14.5%,其综合力学性能最优。多向轧制使双峰织构沿ND方向45°偏转,高温轧制使双峰织构由基极向RD方向偏转的角度降低。轧制后样品R-cube织构组分最强,高温多向异步轧制使β-Li相轧制织构转变成为{001}〈100〉织构,有利于{011}〈111〉滑移系发生多滑移。  相似文献   

19.
Specimens of a relatively coarse-grained Al-5.8Cu-0.39Zr (wt %) alloy were deformed at 730 K in tension by various amounts and at several strain rates. By comparing the grip and gauge (deformed) portions of each tested sample, taking into account the variations in the initial texture and using an orientation distribution function evaluation, the texture changes due to superplastic flow were identified. Crystallographic slip is shown to be significant only beyond the strain-rate range for maximum elongation. At lower strain rates, grain/interphase boundary sliding appears to control the deformation. The accompanying grain rotation causes a general weakening of the initial texture. It is also shown that evaluating an average value of the strain-rate sensitivity index,m, from a double logarithmic plot of the flow stress and true strain rate is inadequate for delineating the ranges of operation of different mechanisms. Instead, the evaluation ofm by the changing strain rate method is advocated.  相似文献   

20.
Poor formability of rolled magnesium (Mg) alloys extremely restricts applications in form of sheets originating from formation of strong basal texture. Recently, we found that increasing rolling temperature from 723 to 798 K for a AZ31 Mg alloy can significantly improve stretch formability due to remarkable texture weakening after annealing. In this study, static recrystallization behaviors of AZ31 alloy sheets rolled at 723 and 798 K were investigated by electron backscattered diffraction analyses at different annealing stages in order to understand the origin of high temperature rolling on texture weakening. For both sheets, similar deformation microstructures with approximately the same types and fractions of twins exist in the as-rolled condition and recrystallized grains are mainly formed at pre-existing grain boundaries due to discontinuous recrystallization during subsequent annealing. However, only the basal texture of the latter remarkably weakens due to the formation of new recrystallized grains with well-dispersed orientations. Non-basal slips enhanced during high temperature rolling at 798 K are most likely responsible for the texture randomization as a result of rotations of recrystallization nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号