首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用二次生长法, 在廉价大孔α-Al2O3管状载体上通过变温热浸渍涂晶法获得连续致密的晶种层, 在摩尔配比为1SiO2:0.05Al2O3:0.26Na2O:0.09K2O:30H2O清液体系中120℃水热晶化16 h成功制备出T型分子筛膜。实验考察了小晶种液浓度, 晶化时间对T型沸石分子筛膜的形貌和性能的影响。XRD和SEM结果表明, 晶化过程中晶种的外延生长和新的晶核成核过程同时进行, 晶种的外延生长和新核的诱导作用产生协同作用, 缩短T型沸石膜的生长时间。将制备的T型沸石分子筛膜用于75℃渗透汽化分离10wt%水/异丙醇体系, 其渗透通量和分离系数分别达到2.96 kg/(m2·h)和6400。  相似文献   

2.
用变温热浸渍法在廉价大孔α-Al2O3的载体管上涂覆大小晶种引入平整均匀的晶种层, 随后在无有机模板剂的含氟体系下通过二次水热生长法制备了亲水性ZSM-5沸石分子筛膜。实验考察了小晶种液浓度对形成晶种层及ZSM-5沸石分子筛膜形貌和性能的影响。并将制备的ZSM-5沸石分子筛膜分别用于渗透汽化异丙醇脱水和乙酸脱水体系中。结果显示, 小晶种液浓度为0.2wt%时, 制备的ZSM-5沸石分子筛膜在75℃下对10wt%水/异丙醇和10wt% 水/乙酸混合物体系均具有优良的分离性能, 其渗透通量分别为3.64 kg/(m2·h)和0.61 kg/(m2·h), 分离因子分别达3204和1321。  相似文献   

3.
以廉价管状大孔α-Al2O3作为载体, 采用二次生长法, 在超稀溶液体系(H2O/SiO2=1000)中成功制备了高性能MFI型沸石膜, 分别考察晶种尺寸和H2O/SiO2对沸石膜的形貌及渗透蒸发性能的影响。结果表明, 尺寸为0.4 μm晶种制备的晶种层具有更大的晶核密度, 能够增加载体表面的成核位点, 因此对沸石膜的生长具有更强的诱导作用。超稀溶液体系中低浓度的模板剂和硅源环境能够控制沸石晶体的生长速率, 从而降低沸石膜厚度, 同时可以抑制晶间缺陷的形成。将制备的沸石膜用于60℃渗透蒸发分离5wt%乙醇/水混合物, 分离因子α(乙醇/水)和渗透通量分别为47和4.09 kg/(m2·h)。采用超稀的合成液配方和廉价大孔载体, 既可以降低沸石膜制备的原料成本, 又可以提高沸石膜的渗透通量, 显示出MFI型沸石膜在脱除水中低浓度有机物潜在的工业化应用前景。  相似文献   

4.
本研究采用碳热还原氮化法(CRN)合成AlN粉体。以γ-Al2O3和炭黑为原料, 采用直接发泡工艺与注凝成型相结合的方法制备出Al2O3/C泡沫, 作为合成AlN粉体的前驱体。泡沫孔隙尺寸从几十微米到几百微米, 总孔隙率56%~90%。具有通孔结构的泡沫前驱体实现了原料内部各处的均匀的固-气反应, 泡沫总孔隙率≥80%可显著提高CRN反应的速率。XRD分析结果显示: CRN过程中存在γ-Al2O3到α-Al2O3的相转变, 反应起始温度在1300℃以上, 并在1550℃反应完全。在1650℃合成得到的AlN颗粒平均粒径不超过1 µm, 氮含量为32.9wt%。  相似文献   

5.
采用干湿法纺丝技术制备Sr0.7Ba0.3Fe0.9Mo0.1O3-δ(SBFM)中空纤维支撑体, 以Nb2O5掺杂的SrCo0.8Fe0.2O3-δ (SCFNb)为膜材料, 采用旋转喷涂结合共烧结技术制备出担载型SCFNb/SBFM中空纤维氧渗透膜。借助于XRD、SEM、热膨胀分析、透氧及膜反应性能测试等手段, 分别对样品的晶相结构、膜微观结构、支撑体与膜层的烧结行为、膜的氧渗透通量及膜反应性能进行了研究。结果表明, 膜层与支撑体的晶相结构仍保持钙钛矿主体相。支撑体具有单一海绵孔/指状孔结构, 膜厚为5 μm且致密无缺陷, 膜层与支撑体结合良好。在900℃时, 氧渗透通量达到0.74 mL/(cm2·min)。850℃下甲烷部分氧化膜反应稳定操作超过200 h, 稳态下氧渗透通量为4.5 mL/(cm2·min)。研究表明, 担载型SCFNb/SBFM中空纤维氧渗透膜具有较高的氧渗透通量, 同时具有良好的膜反应稳定性。  相似文献   

6.
以廉价的二氧化硅、炭黑和硅粉为起始原料, 利用碳热还原-反应烧结法制备了高气孔率、孔结构均匀的多孔氮化硅陶瓷, 考察了原料中硅粉含量对多孔氮化硅陶瓷微观组织和力学性能的影响。XRD分析表明烧结后的试样成分除了少量的α-Si3N4相和晶间相Y2Si3O3N4外, 其余都是β-Si3N4相; SEM分析显示微观组织由棒状β-Si3N4晶粒和均匀的孔组成。通过改变硅粉的含量, 制备了不同气孔率, 力学性能优异的多孔氮化硅陶瓷。  相似文献   

7.
通过聚苯乙烯(PS)胶晶球模板法制备出三维有序大孔(3DOM)α-Fe2O3薄膜骨架, 再利用磁控溅射将Al沉积到3DOM α-Fe2O3骨架上得到核/壳结构的Fe2O3/Al纳米铝热复合薄膜。扫描电镜(SEM)测试结果表明: 纳米Al均匀地附着在α-Fe2O3骨架表面, 骨架孔结构由原先的近圆形转变为Al沉积后的类菱形, 孔壁的厚度从32 nm增加到100 nm; 采用X射线能谱(EDS)对Fe2O3/Al纳米铝热薄膜的元素含量进行了分析; 由差示扫描量热法(DSC)分析显示铝热薄膜在490℃开始反应, 经历固-固和固-液两个反应阶段, 总放热量达到1374.7 J/g; 使用激光点火器对铝热薄膜进行点火, 薄膜飞溅出火花并伴有明亮刺眼的亮光, 整个发火时间达2.6 ms, 显示其能被点火并发生自蔓延反应, 可作为一种理想的点火材料。  相似文献   

8.
以YbH2-MgO体系为烧结助剂, 采用两步法烧结制备了高热导率高强度氮化硅陶瓷, 研究了YbH2-MgO对氮化硅致密化行为、相组成、微观形貌、热导率和抗弯强度的影响。在预烧结阶段, YbH2在还原SiO2的同时原位生成了Yb2O3, 进而形成“缺氧-富氮”液相。该液相不仅有利于晶粒的生长, 更有利于阻碍晶格氧的生成, 相较于Yb2O3-MgO助剂体系, β-Si3N4晶粒尺寸更大, 晶格缺陷更少, 低热导晶间相更少, 在1900 ℃保温24 h后, 热导率最优可达131.15 W·m-1·K-1, 较Yb2O3-MgO体系提升13.7%。用YbH2代替Yb2O3, 在低温条件下烧结制备得到的氮化硅抗弯强度有所改善, 在1800 ℃保温4 h的抗弯强度可达(1008±35) MPa; 但在高温烧结时强度略有下降, 这与微观结构的变化密切相关。研究表明, YbH2-MgO体系是制备高热导率高强度氮化硅陶瓷的有效烧结助剂。  相似文献   

9.
以Si粉、Al粉和Al2O3粉为原料压制成条样, 在1650~1850 K氮气和埋Si3N4颗粒气氛下分别合成了β-SiAlON晶须、带状和柱状晶, 并系统研究了一维β-SiAlON材料可控合成条件, 进而结合热力学分析了一维β-SiAlON材料的生长机制。结果表明: 以Si粉、Al粉和Al2O3为原料, 在氮气(纯度99.9%)和埋Si3N4颗粒气氛下在1650~1850 K保温6 h, 可以合成不同形貌的一维β-SiAlON材料。生长温度是一维β-SiAlON材料形貌控制的关键因素。生长温度为1650 K时, 合成了β-SiAlON晶须, 晶须直径200~400 nm, 长径比100~1000; 生长温度在1700~1800 K时, 可以合成β-SiAlON带状晶体, 厚度为200 nm, 宽度为1~4 μm, 长宽比在10~20之间; 生长温度升高至1800 K时, 出现大量柱状晶体。结合晶须显微结构形貌和热力学分析, β-SiAlON晶须的生长机制为气-固(VS)生长机制。  相似文献   

10.
本研究针对α-Fe2O3中空穴迁移距离短(2~4 nm)和水氧化动力学缓慢的问题, 通过钯催化氧化法构筑了有序氧空位掺杂的一维α-Fe2O3纳米带(α-Fe2O3 NBs)阵列, 以提高光电催化分解水产氢性能。采用不同表征方法对光阳极进行形貌、结构分析。结果表明:一维α-Fe2O3 NBs表面形成了有序氧空位, 周期为1.48 nm, 对应于10倍的(11¯2)晶面间距。光电化学及产氢性能表明:α-Fe2O3 NBs起始电位为0.587 V (vs. RHE), 在1.6 V (vs. RHE)时光电流密度为3.3 mA·cm-2, 产氢速率达29.46 μmol·cm-2·h-1。这归因于引入有序氧空位提高了载流子密度, 促进了空穴的分离传输, 并作为表面活性位点, 促使表面水氧化反应加速进行。  相似文献   

11.
魏磊  黄彦 《无机材料学报》2015,30(4):427-431
提出了一种炭辅助的固态粒子烧结工艺, 可在大孔烧结金属载体表面直接制得无过渡层的多孔陶瓷膜。以纳米TiO2为成膜粒子, 以大孔不锈钢滤管为载体, 以聚乙烯醇(PVA)为粘结剂, 采用浸渍提拉法在载体表面涂覆。考察了不同烧结气氛(氮气和空气)对陶瓷膜制备的影响。通过扫描电子显微镜、X射线衍射、热重分析和孔径测试对材料进行表征。实验发现, 试样在空气中烧结后膜层发生严重剥落, 而在氮气中烧结后膜层完整。这是由于PVA在氮气中高温碳化生成炭, 所形成的TiO2和炭的混合结构削弱了因载体表面状况差和陶瓷—金属间热膨胀系数不匹配而引起的陶瓷层烧结应力。待陶瓷颗粒烧结后, 涂层中的炭经空气热处理脱除。所制备的多孔TiO2/不锈钢膜的膜层厚度约10 μm, 平均孔径为0.21 μm, 室温下氮气通量为1.72 m3/(m2·h·kPa)。  相似文献   

12.
采用干压成型法制备了多孔α-Al2O3基陶瓷片, 研究了烧结温度和掺杂SiO2对其结构、形貌和性能的影响. 提高烧结温度能增加α-Al2O3基陶瓷片的抗压强度, 但收缩率也会随之增大。最佳烧结温度为1180℃, 收缩率小于0.5%, 抗压强度大于80 MPa。当掺杂SiO2粉体后, 陶瓷片中的无定形SiO2在烧结过程中晶化形成方石英, 能够促进α-Al2O3陶瓷片的烧结。当SiO2含量为12wt%, 并在1180℃下烧结时, 陶瓷片的收缩率仅为1.2%, 抗压强度大于110 MPa。与α-Al2O3陶瓷片相比, 其孔径更小但孔径分布更宽。研究表明, α-Al2O3和SiO2/Al2O3陶瓷片均具有良好的分子筛膜生长活性。但由于载体具有不同的物化性质, 所制备的ZSM-5分子筛膜具有不同的形貌和尺寸。  相似文献   

13.
采用错流真空抽吸涂晶与动态水热合成的方法在四通道陶瓷中空纤维载体的内表面制备出高性能的NaA分子筛膜, 并用于75℃下90wt%乙醇/水混合物渗透汽化脱水分离, 系统考察了晶种液流速、涂晶时间与合成温度对NaA分子筛膜形貌与分离性能的影响。结果表明, 当晶种液流速为100 mL/h、涂晶时间为5 s时制备的NaA分子筛膜致密均匀; 晶种液流速过慢或者涂晶时间过长会导致膜厚增加同时也会在膜表面产生缺陷。当膜在100℃下水热合成两次, 制备的NaA分子筛膜分离性能最佳, 此时膜的分离因子为1585, 通量高达8.8 kg/(m2•h)。当合成温度过低时, 膜的晶化程度较低, 膜表面出现缺陷; 当合成温度过高时, 膜晶体生长速率过快, 交互生长程度较差, 膜的断面产生缺陷, 导致膜分离性能较低。  相似文献   

14.
采用功能化无机粒子“二合一”修饰的方法, 通过将3-氨丙基三乙氧基硅烷(APTES)功能化的α-Al2O3粒子负载在大孔的管状载体上制备了类沸石咪唑框架(ZIF-7)膜, 考察了APTES的用量对ZIF-7膜制备的影响。结果表明, 嫁接有APTES的α-Al2O3粒子负载在载体上, 有效降低了载体表面孔尺寸并增加了载体表面异相成核的位点, 促进了膜的生长, 在APTES与α-Al2O3粒子的摩尔比为1:3时, 能够制得致密连续较薄的ZIF-7膜,?膜厚度大约为2~3 μm, H2的渗透通量为 4.70×10-7 mol/(m2·s·Pa), H2/CO2、H2/N2的理想分离因数分别为5.87、4.59, 均大于努森扩散系数。  相似文献   

15.
采用离子溶液修复法来对传统二次生长法制备的分子筛膜进行修饰,制备出了缺陷较少、气体分离选择性能优越的分子筛膜。以四乙基氢氧化铵为模板剂,在220℃下水热晶化24h得到SAPO-34分子筛晶种。利用二次生长法在氧化铝载体表面水热合成了SAPO-34分子筛膜,并通过离子溶液浸渍,对分子筛膜缺陷进行修饰。通过X射线衍射及扫描电子显微镜对分子筛进行表征分析。通过气体分离装置对SAPO-34分子筛膜进行气体分离性能研究。结果表明:在298K,0.1MPa下分子筛膜对H_2/CO_2的分离因子从5.27提高到了6.76。  相似文献   

16.
玻璃冷却速率对锂铝硅微晶玻璃晶化行为和结构的影响   总被引:1,自引:0,他引:1  
玻璃成型过程中冷却速率对Li2O-Al2O3-SiO2(LAS)微晶玻璃的晶化行为及其结构均匀性具有重要影响. 有限元分析表明, 10 mm厚玻璃冷却速率显著低于2 mm厚玻璃, 冷却15 s以上玻璃的中心温度仍高于700℃, 对应的基础玻璃极易出现“析晶结石”. 利用DTA、IR、SEM等技术分析不同厚度LAS玻璃及其微晶玻璃的显微结构, 8 mm厚的玻璃冷却速率低, 样品心部析出初始晶核, 并在热处理阶段形成β-锂辉石固溶体相, 而样品表面层却为β-石英固溶体相; 与此相反, 3 mm厚的玻璃冷却速率高, 没有初始晶核生成, 热处理后得到单一均匀的β-石英固溶体相. 因此, 提高玻璃冷却速率、控制玻璃温度均匀性是制备结构均匀LAS微晶玻璃的关键.  相似文献   

17.
β-Ga2O3晶体是一种新型宽禁带氧化物半导体材料, 本征导电性差。为了在调控导电性能的同时兼顾高的透过率和结晶性能, 离子掺杂是一种有效的途径。采用光学浮区法生长出ϕ8 mm×50 mm蓝色透明In:Ga2O3晶体, 晶体具有较高的结晶完整性。In3+离子掺杂后, β-Ga2O3晶体在红外波段出现明显的自由载流子吸收, 热导率稍有减小。室温下, In:Ga2O3晶体的电导率和载流子浓度分别为4.94×10-4 S/cm和1.005×1016 cm-3, 其值高于β-Ga2O3晶体约1个数量级。In:Ga2O3晶体电学性能对热处理敏感, 1200℃空气气氛和氩气气氛退火后电导率降低。结果表明, In3+离子掺杂能够调控β-Ga2O3晶体的导电性能。  相似文献   

18.
本研究发展了一种用于制备氧化物热电材料γ-NaxCoO2粉体的化学合成方法——聚丙烯酸钠(PAAS)凝胶法。主要研究了PAAS/Co2+摩尔比、原料浓度和煅烧温度对产物相组成及微观形态的影响规律, 探讨了物相形成机制, 同时用该方法结合SPS制备了不同Na离子浓度的NaxCoO2多晶样品, 并对其热电性能进行了表征。结果表明, PAAS/Co2+摩尔比对产物相组成产生了显著影响, 随着PAAS/Co2+摩尔比的增加, 样品的相组成由Co3O4相向单相γ-NaxCoO2转变, 合适的PAAS/Co2+摩尔比为0.8~1.1。而反应原料浓度对产物相组成的影响存在一个临界值(0.025 mol/L), 大于临界值抑制单相形成, 小于临界值促进单相形成。煅烧温度的升高有助于γ-NaxCoO2单相的形成, 800℃煅烧得到γ-NaxCoO2单相, 晶粒形态呈片状, 平均厚度约200 nm, 片状方向的尺寸在1~4 μm之间。随着Na含量的增加, 样品的Seebeck系数增大, 电导率增加, 热导率降低, 最终导致ZT值大幅增加。  相似文献   

19.
以异丁烯和马来酸酐共聚物(PIBM)为分散剂和凝胶剂, 同时添加两种表面活性剂, 通过机械发泡和注凝成型工艺制备高气孔率Al2O3泡沫陶瓷, 并研究了DE211环氧树脂对Al2O3泡沫陶瓷结构和性能的影响。结果表明, 该工艺能够制备气孔率达92.4%的Al2O3泡沫陶瓷。随着DE211环氧树脂的加入, 泡沫陶瓷的气孔率略有降低, 抗压强度由0.5 MPa提高到3 MPa, 平均气孔尺寸由582 μm下降到331 μm, 孔壁塌陷少。这归因于DE211环氧树脂的环氧基能够与PIBM的酸酐发生反应, 加快凝胶固化速度, 从而有利于稳定泡沫结构。  相似文献   

20.
通过溶胶-凝胶-自蔓延燃烧法制备尖晶石型AFe2O4(A=Cu, Co, Ni, Mg, Zn)催化剂, 以甲苯为VOCs模拟气, 考察AFe2O4催化剂对VOCs的催化燃烧活性, 并采用XRD、N2吸附-脱附、SEM、TEM、H2-TPR、XPS对催化剂进行表征分析。结果表明: AFe2O4表现出较好的催化燃烧活性, 其中CuFe2O4的催化燃烧活性最佳, 起燃温度(T50)和完全燃烧温度(T90)分别为188℃、239℃。AFe2O4具有明显的片状尖晶石晶体, 并形成以介孔为主的多级孔结构, 该特点为催化剂提供了大量表面活性位。A位元素种类对其催化燃烧活性影响较大, 当A位元素为Cu时, Cu的H2还原峰面积远大于其他元素, H2还原温度仅为289℃, 表面亲电子氧和氧空位浓度占氧元素总量(Oele/O1S)的36%。CuFe2O4为片状反尖晶石晶型, 晶格体积仅为0.294 nm3, 并伴有CuO和α-Fe2O3物种。以介孔为主的多级孔结构、特有的片状反尖晶石晶型以及该晶型与CuO和α-Fe2O3的协同作用是CuFe2O4催化燃烧活性提高的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号