首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental results on the influence of various processing parameters on water-glass-based atmospheric pressure dried aerogels for liquid marble purpose are reported. Silica aerogels were prepared by varying the parameters namely washing temperature of the gels with water, washing period of the gels, protic solvents, and drying method. The physical properties of silica aerogels were studied by measuring granular bulk density, contact angle with water, thermal conductivity, and thermal stability in the furnace. The elemental analyses were carried out using Atomic Absorption Spectroscopy (AAS) and FT-Raman spectroscopy. The structural studies were carried out using Transmission Electron Microscopy (TEM). Also, the effect of humidity on the silica aerogels was studied in humidity chamber. Opaque silica aerogels with hydrophobicity (150°), low density (0.053 g/cm3), and low thermal conductivity (0.068 W/mK) have been obtained for the molar ratio of Na2SiO3: H2O: citric acid: TMCS at 1:146.67:0.72:9.46. The hydrophobic powder of silica aerogels can form the liquid marbles.  相似文献   

2.
以海藻酸铵(ALG)、纳米氢氧化铝(ATH)和纳米蒙脱土(MMT)为原料,采用溶液共混法和真空冷冻干燥法制备了海藻酸盐基纳米复合气凝胶。采用扫描电子显微镜、傅里叶红外光谱仪、电子万能实验机、X射线衍射仪、热重分析仪对气凝胶进行了形貌、结构表征,并分析了其力学性能和热稳定性能。结果表明:采用ALG和MMT制备的气凝胶具有典型的三维骨架网络结构,交联反应不影响气凝胶的形貌;气凝胶具有较低的密度和较好的力学性能,密度低至0.12 g/cm3,压缩模量最高可达9.48 MPa;Ca2+交联和MMT的加入显著提高了气凝胶的热稳定性,A5MMT5Ca气凝胶的耐热温度高达205℃。  相似文献   

3.
以TEOS(四乙氧基硅烷)和APTES(3-氨丙基三乙氧基硅烷)共缩聚制备SiO2凝胶后采用N3200(1,6-环己烷二异氰酸酯低聚物)对其改性,经常压干燥制备了聚合物改性SiO2气凝胶。采用TGA、N2吸附-脱附、SEM和单轴抗压实验等测试方法对所制备的气凝胶进行了表征。结果表明:随气凝胶中聚合物含量的增加,气凝胶制...  相似文献   

4.
Aerogels are lightweight, highly transparent, thermally insulating materials comprising interconnected nanostructured pores. Low surface energy aerogels were prepared from ambient pressure drying of sodium silicate-based gels by modifying the pore surfaces with silylating agents including trimethylchlorosilane (TMCS), hexamethyldisiloxane (HMDSO), and hexamethyldisilazane (HMDZ), in combination with each other. Hydrophobic properties of the resulted aerogels were studied by contact angle measurements. Fourier-transform infrared spectroscopy (FTIR) was used to monitor the changes in chemical bonds within the aerogels due to surface modification. The microstructure was studied by transmission electron microscopy (TEM). Effect of temperature on the hydrophobicity of the aerogels was studied by thermogravimetric analysis/differential thermal analysis (TGA-DTA). Surface modification of silica gels with various mixtures of surface-modification agents showed different behaviors. Aerogels made by HMDZ and HMDSO combination comprised 5 nm pores and particles and showed a high surface energy, whereas aerogels prepared by HMDSO and TMCS combination had lower surface energy with relatively larger particle and pore sizes with a more uniform distribution of both. The properties of the latter sample were attributed to a greater degree of surface modification and negligible condensation of OH groups. This preparation produced silica aerogels with a low density (0.042 g/cc), low surface energy (3.39 N cm−1), low thermal conductivity (0.050 W K−1 m−1), high optical transmission (85% at 700 nm) and hydrophobic (154° contact angle) with high hydrophobic thermal stability (425 °C). Moreover, the contact angle for materials prepared by this method decreased negligibly over 12 months’ storage in ambient conditions.  相似文献   

5.
以正硅酸乙酯(TEOS)和甲基三乙氧基硅烷(MTES)为复合硅源,玻璃纤维为增强体,采用溶胶-凝胶和常压干燥工艺制备出疏水性SiO2-玻璃纤维复合气凝胶。利用N2吸附脱附、扫描电镜、高分辨透射电镜、红外光谱、接触角、热重-差热分析及力学测试等手段表征复合气凝胶,并分析预处理玻璃纤维时的盐酸浓度及浸泡时间对复合气凝胶密度的影响。结果表明:当玻璃纤维的预处理条件为2.5mol/L盐酸浸泡0.5h时,制备得到的SiO2-玻璃纤维复合气凝胶表观密度最低,为0.12g/cm3,孔径主要分布在2~50nm,疏水角为142°,热稳定性温度高达500℃,抗压强度为0.05MPa,弹性模量为0.5MPa。  相似文献   

6.
Low cost silica xerogels/aerogels were synthesized from steel slag and bean pod ash by sol–gel method. Comparison study showed differences between structural, morphological, textural, thermal and physical properties of the silica xerogels and aerogels. Formation of amorphous structure and silica network was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy analyses, respectively. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses revealed that silica xerogels had smaller interlinked network in contrast to silica aerogels. Typical type IV isotherm was observed for all samples in N2 adsorption-desorption isotherms. The highest surface area was determined as 371 m2 g−1 for silica aerogel synthesized from steel slag. Particle size of silica aerogels was lower than that of the silica xerogels. The more porous structure made silica aerogels desirable materials with lower bulk density and thermal conductivity when compared to silica xerogels. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) exhibited high thermal stability of the silica xerogels/aerogels. Although silica xerogels had highly hydrophilic structure, contact angle of silica aerogels synthesized from steel slag and bean pod ash was 60° and 74°, respectively. The comparison study will give a new point of view about differences between silica xerogels and aerogels synthesized from by-products or inorganic/organic waste instead of silicon alkoxides.  相似文献   

7.
SiO2气凝胶的研究现状与应用   总被引:3,自引:2,他引:1  
综述了SiO2气凝胶的原料、凝胶工艺、干燥工艺、性能与应用的基本规律和最新进展,展望了SiO2气凝胶未来的研究方向。在SiO2气凝胶优异性能被广泛认同的前提下,工艺研究的重心集中在克服低成本化和强度、吸湿性等,应用研究主要集中在热学、吸附与催化等领域。  相似文献   

8.
硅气凝胶材料的研究进展   总被引:9,自引:0,他引:9  
王珏  周斌 《功能材料》1995,26(1):15-19
硅气凝胶是一种具有许多奇异性质和广泛应用前景的轻质纳米多孔性材料,近年来受到物理学家,化学家和材料学家们的重视,本文系统归纳了近年来有关硅气凝胶的研究成果,对硅气凝胶的制备原理,结构与性能以及应用开发等研究的进展作了简要的论述。  相似文献   

9.
Silica aerogels are very light and highly porous materials that are intriguingly and complexly networked with large internal surface area, high hydrophobicity with extremely low density and thermal conductivity. These features make them ideal choice for applications as thermal and acoustics insulators or as optical, electrical, and energy storing devices. However, their exploitation for structural applications is primarily inhibited by their brittleness. The brittleness of the silica aerogels makes their processing and handling difficult. Volumetric shrinkage occurs, which becomes more apparent at elevated temperatures. While there are hybrid silica aerogels doped with materials such as polymer, ceramics, metals in the market, the improvements in the mechanical properties are compromised with tremendous increase in density and reduction in the insulation performance. Post-synthesis binding treatment of silica aerogels composites are not extensively explored due to the chemically inert trimethylsilyl (TMS) terminal groups on the surface of the hydrophobic silica aerogels. This paper discusses a unique fabrication method of developing a ductile silica aerogel composite solid via post-synthesis binding treatment. Gelatin–silica aerogel (GSA) and GSA–sodium dodecyl sulfate (SDS) composite blocks were produced by mixing hydrophobic aerogel granulates in a gelatin–SDS foamed solution by frothing method. The entire fabrication process and grounds for using a controlled % of gelatin as the main binder and SDS as an additive are explained. The compression testing of the blocks is presented. The associated strain recovery—an unusual phenomenon with brittle silica aerogels, observed upon unloading is highlighted and studied. The microstructure and surface characterization of these composites was examined via FESEM/EDX and XPS/ESCA, respectively. The dependency of process variables involved were analyzed through analysis of variance (ANOVA) model. Empirical models that relate the composition of gelatin, aerogel, and SDS to achieve the optimal strain recovery with the associated compressive modulus and strength and density are established. The transition from brittleness to ductility is measured in terms of compressive stress versus strain behavior for various mass fractions of gelatin and SDS. The test data presented indicate analogous behavior of these to creep-like behavior of a material typically identified as the primary, secondary, and tertiary stages. The rationale and mechanisms behind such creep-like three stages are explained using schematic diagrams.  相似文献   

10.
轻质高效保温材料掺杂硅气凝胶   总被引:3,自引:0,他引:3  
王珏  周斌 《功能材料》1996,27(2):167-170
利用正硅酸甲脂(TMOS)为原料的溶胶-凝胶过程,摸索了不同反应条件下形成凝胶的规律,并选用TiO2粉末及玻璃纤维作为掺杂剂,采用超临界干燥处理制备出掺TiO2的硅气凝胶,通过对红外光谱以及不同温度和气压条件下热导率的测量,讨论了不同成份配比以及相应的热传输过程对材料热导率的影响。结果表明,密度为260kg/m^3的掺杂硅气凝胶在800K时的热导率为0.038w/m.k,是一种新型的轻质高效保温材  相似文献   

11.
Silica aerogels were prepared by sol-gel technique from industrial silicon derivatives (polyethoxydisiloxanes, E-40), followed by silylation and drying under ambient pressure. The specific surface area, pore size distribution and thermal conductivity of the silica aerogels were investigated and the results showed that the diameter of the silica particles is about 6 nm and the average pore size of the silica aerogels is 14.7 nm. The specific surface area of which is about 1000 m2·g-1 and the thermal conductivity is about 0.014 wm-1·K-1 at room temperature and pressure of 1.01×105 Pa. The Si-CH3 groups were also detected on the internal surface of the silica aerogels, which show hydrophobic. Silica aerogels derived by this technique is low cost and have wide applications.  相似文献   

12.
从SiO_2气凝胶的隔热机理出发,归纳了降低其导热系数的有效途径,概述了在溶胶-凝胶过程中硅源的甄选原则及开发趋势,总结了当前常用湿凝胶干燥工艺的优缺点并提出改进方法,着重介绍了当前保温隔热领域SiO_2气凝胶复合材料的种类及应用现状,最后对SiO_2气凝胶材料的发展前景进行了展望。  相似文献   

13.
Highly porous hosting materials with conducting (favorable to electron transfer) and magnetic (favorable to product separation) bicontinuous networks should possess great potentials for immobilization of various enzymes in the field of biocatalytic engineering, but the synthesis of such materials is still a great challenge. Herein, bifunctional graphene/γ‐Fe2O3 hybrid aerogels with quite low density (30–65 mg cm?3), large specific surface area (270–414 m2 g?1), high electrical conductivity (0.5–5 × 10?2 S m?1), and superior saturation magnetization (23–54 emu g?1) are fabricated. Single networks of either graphene aerogels or γ‐Fe2O3 aerogels are obtained by etching of the hybrid aerogels with acid solution or calcining of the hybrid aerogels in air, indicative of the double networks of the as‐synthesized graphene/γ‐Fe2O3 hybrid aerogels for the first time. The resulting bifunctional aerogels are used to immobilize β‐glucuronidase for biocatalytic transformation of glycyrrhizin into glycyrrhetinic acid monoglucuronide or glycyrrhetinic acid, with high biocatalytic activity and definite repeatability.  相似文献   

14.
氧化铝气凝胶是一种高孔隙率、低密度、高比表面积、耐高温和低热导的纳米多孔材料, 在高温隔热领域(如航天飞行器热防护系统、工业窑炉保温材料等)具有广阔的应用前景。但是, 纯氧化铝气凝胶因耐温性(1000 ℃以上)、力学性能和高温隔热性能相对较差难以直接应用, 需要引入增强相和遮光组分制备成气凝胶复合材料以进行改善。本文对耐高温氧化铝气凝胶的制备、氧化铝气凝胶隔热复合材料的制备及性能等方面的最新研究进展进行了综述。研究人员通过原位掺杂改性、沉积改性、有机链和炭涂层改性等方法提高了氧化铝气凝胶的热稳定性。在氧化铝气凝胶中引入晶须、颗粒、多孔骨架和纤维等增强相, 能够大幅提高其力学性能; 纤维和遮光剂的协同作用, 能够提高氧化铝气凝胶抑制红外辐射的能力, 显著降低高温热导率。本文还提出了后续的研究方向:对氧化铝气凝胶的密度、微观结构进行精细调控, 再引入合适的异质元素和遮光剂,以进一步提高气凝胶的热稳定性和复合材料的隔热性能;深入研究复合材料在高温下结构和性能的演化, 以及氧化铝气凝胶和增强相之间的相互作用。作为一种新型的隔热材料, 氧化铝气凝胶复合材料将在高温隔热领域发挥其优势并逐步实现广泛应用。  相似文献   

15.
SiO_2气凝胶是具有优异性能的新型多孔纳米材料,是国内外热学、光学、声学及电学等学科的研究和发展热点。SiO_2气凝胶的制备包括凝胶形成、凝胶老化及后处理3个阶段,其结构和性能与制备参数有关。对3个阶段制备参数的影响规律进行了综述。针对凝胶形成阶段,从硅源种类、化学配比、pH值、反应温度及水解时间5个参数进行概述;针对凝胶老化阶段,从老化温度与时间两个参数进行概述;针对后处理阶段,从干燥剂种类、改性剂种类和浓度及改性温度与时间5个参数进行概述。通过进一步探索制备参数对SiO_2气凝胶结构与性能影响的规律,不断优化生产制备工艺,对推动SiO_2气凝胶规模化生产及推广应用有指导意义。  相似文献   

16.
Nanostructured silica based xerogels and aerogels are prepared by sol-gel technology, using methyltrimethoxysilane as precursor. The influence of the drying method and conditions on the microstructure of the obtained materials is investigated, since the drying stage has a critical influence on their porosity. Two types of drying methods were used: atmospheric pressure drying (evaporative), to produce xerogels, and supercritical fluids drying, to obtain aerogels. Although the supercritical fluids drying technique is more expensive and hazardous than the atmospheric pressure drying, it is well known that aerogels are less dense than the xerogels due to less pore shrinkage. However, the ideal situation would be to use atmospheric pressure drying in conditions that minimize the pore collapse. Therefore, in this work, different temperature cycles for atmospheric pressure drying and two heating rates for the supercritical fluids drying are tested to study the gels' shrinkage by analyzing the density and porosity properties of the final materials. The best materials obtained are aerogels dried with the lower heating rate (approximately 80 degrees C/h), since they exhibit very low bulk density (approximately 50 kg/m3), high porosity (95%)-mainly micro and mesopores, high surface area (approximately 500 m2/g), moderate flexibility and a remarkable hydrophobic character (>140 degrees). It was proved that the temperature cycles of atmospheric pressure drying can be tuned to obtain xerogels with properties comparable to those of aerogels, having a bulk density only approximately15 kg/m3 higher. All the synthesized materials fulfill the requirements for application as insulators in Space environments.  相似文献   

17.
CdS coatings are deposited on the external and inner surfaces of silica aerogels with a single-source metal-organic chemical vapor deposition method at atmospheric pressure. Thermogravimetry analysis and differential scanning calorimetry experiments are used to investigate the thermal behavior of silica aerogels, and the sample treated at 500 °C for 120 min has been found to possess the lowest density. The densities and morphologies of the silica aerogels under the different treatment temperatures are also studied. The CdS coatings are deposited on the inner surface of the silica aerogels with a 4 l/min flow of Ar gas. The procedure for the preparation of the CdS coatings on the inner surface is reported in details. The surface morphologies of the CdS-coated silica aerogels are analyzed by scanning electron microscopy. The results of the energy dispersive X-ray spectroscopy and X-ray diffraction analysis demonstrate that the CdS coatings are composed of cadmium and sulphur with an approximately atomic ratio of 1:1, and they are hexagonal structures.  相似文献   

18.
超低密度SiO2气凝胶快速制备的新方法   总被引:1,自引:0,他引:1  
徐超  周斌  解德滨  沈军  倪星元  徐展 《材料导报》2006,20(6):105-106,110
以正硅酸乙酯(TEOS)为硅源,采用酸碱二步催化溶胶-凝胶法,结合超临界干燥技术制备了超低密度SiO2气凝胶.通过采用CH3CN为稀释剂,有效地降低了胶凝温度(室温),缩短了胶凝时间,从而达到了快速制备SiO2气凝胶的目的.利用SEM、BET等方法对干燥不同程度的低密度SiO2气凝胶微结构进行了研究.  相似文献   

19.
Low density TEOS based silica aerogels using methanol solvent   总被引:1,自引:1,他引:1  
Highly transparent monolithic silica aerogels based on the TEOS precursor were prepared by the two-step (acid-base) sol–gel process. The hydrolysis and condensation reactions of tetraethoxysilane (TEOS) proceeded in methanol solvent with oxalic acid and NH4OH as the catalysts, respectively. The wet gels were supercritically dried using methanol. The aerogels were characterized by transmission electron microscopy (TEM) and measurements of optical transmission, bulk density, volume shrinkage, porosity and thermal conductivity. Monolithic silica aerogels with high optical transmission (∼93%), low density (∼0.055 g/cm3), low thermal conductivity (∼0.04 W/mK), and minimum volume shrinkage (∼10%), were obtained for the molar ratio of TEOS:MeOH:acidic H2O:basic H2O at 1:33:3.5:3.5 alongwith the oxalic acid and NH4OH concentrations at 0.001 M and 1 M, respectively.  相似文献   

20.
Experimental results obtained on the preparation of hydrophobic silica aerogels by ambient pressure drying method using the sodium silicate precursor with the variation of solvent exchanging process, are reported. The silica hydrogel was prepared by passing the 1.12 specific gravity sodium silicate through the Amberlite (TM) 120 Na+ resin and addition of 1 M ammonium hydroxide to silicic acid. The gel was kept in an oven for 3 h to strengthen the gel. Solvent exchange was carried out with ethanol and hexane for 36 h each followed by 24 h silylation using 20% hexamethyldisilazane (HMDZ) in hexane. Unreacted HMDZ was washed with hexane by keeping the gel in hexane for 24 h. Solvent was decanted and the gel was dried for 24 h by keeping the gel at 50 °C for 6 h, at 150 °C for 12 h and at 200 °C for 6 h. The low density (0.06 g/cm3), highly porous (96.9%), highly hydrophobic (contact angle of 160°), low thermal conductivity (0.07 W/m K) aerogels were obtained for the process of three times exchange with ethanol and three times exchange with hexane in 36 h each, followed by silylation with 20% HMDZ in hexane and two times washing with hexane in 24 h. FTIR studies showed the increase in the intensity of the Si–H and C–H bands of the aerogels with the increase of solvent exchanging times because of increase in silylation for more times of solvent exchange processes. It was found from the TG–DTA studies that the hydrophobicity of the aerogels retained up to the temperature of 325 °C. Water absorption studies show that the aerogels were remained hydrophobic up to 4 months when the aerogels were placed over the water as well as for up to 60 h in a 90% humid atmosphere. SEMs of the aerogels reveal that the pore sizes of the silica network increased, so the percentage of optical transparency decreased with the increase in exchange times with ethanol and hexane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号