首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 442 毫秒
1.
This paper describes a novel methodology that combines smoothed discrete particle hydrodynamics (SDPH) and finite volume method (FVM) to enhance the effective performance in solving the problems of gas‐particle multiphase flow. To describe the collision and fluctuation of particles, this method also increases a new parameter, namely, granular temperature, according to the kinetic theory of granular flow. The coupled framework of SDPH–FVM has been established, in which the drag force and pressure gradient act on the SDPH particles and the momentum sources of drag force are added back onto the FVM mesh. The proposed technique is a coupled discrete‐continuum method based on the two‐fluid model. To compute for the discrete phase, its SDPH is developed from smoothed particle hydrodynamics (SPH), in which the properties of SPH are redefined with some new physical quantities added into the traditional SPH parameters, so that it is more beneficial for SDPH in representing the particle characteristics. For the continuum phase, FVM is employed to discretize the continuum flow field on a stationary grid by capturing fluid characteristics. The coupled method exhibits strong efficiency and accuracy in several two‐dimensional numerical simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The Lagrangian moving particle semi‐implicit (MPS) method has potential to simulate free‐surface and multiphase flows. However, the chaotic distribution of particles can decrease accuracy and reliability in the conventional MPS method. In this study, a new Laplacian model is proposed by removing the errors associated with first‐order partial derivatives based on a corrected matrix. Therefore, a corrective matrix is applied to all the MPS discretization models to enhance computational accuracy. Then, the developed corrected models are coupled into our previous multiphase MPS methods. Separate stabilizing strategies are developed for internal and free‐surface particles. Specifically, particle shifting is applied to internal particles. Meanwhile, a conservative pressure gradient model and a modified optimized particle shifting scheme are applied to free‐surface particles to produce the required adjustments in surface normal and tangent directions, respectively. The simulations of a multifluid pressure oscillation flow and a bubble rising flow demonstrate the accuracy improvements of the corrective matrix. The elliptical drop deformation demonstrates the stability/accuracy improvement of the present stabilizing strategies at free surface. Finally, a turbulent multiphase flow with complicated interface fragmentation and coalescence is simulated to demonstrate the capability of the developed method.  相似文献   

3.
A new particle Galerkin method is introduced to solve the Naiver-Stokes equations in a Lagrangian fashion. The present method aims to suppress key numerical instabilities observed in the strong form Lagrangian particle methods such as smoothed particle hydrodynamics (SPH), incompressible SPH, and moving particle semi-implicit for incompressible free surface flow simulations. It is well-known that strong form Lagrangian particle methods usually rely on ad hoc particle stabilization techniques based on particle shifting, artificial viscosity, or density-invariant condition due to some formulation inconsistency issues. In the present method, we introduce a momentum-consistent velocity smoothing algorithm which is used to combine with the second-order rotational incremental pressure-correction scheme to stabilize the pressure field as well as to enforce the consistency of Neumann boundary condition. To further impose slip-free or nonslip boundary conditions for the fluid flow, a penalty method which is free of ghost or dummy particles is developed. Finally, a particle insertion-deletion adaptive scheme is proposed when the violent fluid flow is considered. Four numerical examples are studied to validate the accuracy and stability of the present method.  相似文献   

4.
A novel Lagrangian gradient smoothing method (L‐GSM) is developed to solve “solid‐flow” (flow media with material strength) problems governed by Lagrangian form of Navier‐Stokes equations. It is a particle‐like method, similar to the smoothed particle hydrodynamics (SPH) method but without the so‐called tensile instability that exists in the SPH since its birth. The L‐GSM uses gradient smoothing technique to approximate the gradient of the field variables, based on the standard GSM that was found working well with Euler grids for general fluids. The Delaunay triangulation algorithm is adopted to update the connectivity of the particles, so that supporting neighboring particles can be determined for accurate gradient approximations. Special techniques are also devised for treatments of 3 types of boundaries: no‐slip solid boundary, free‐surface boundary, and periodical boundary. An advanced GSM operation for better consistency condition is then developed. Tensile stability condition of L‐GSM is investigated through the von Neumann stability analysis as well as numerical tests. The proposed L‐GSM is validated by using benchmarking examples of incompressible flows, including the Couette flow, Poiseuille flow, and 2D shear‐driven cavity. It is then applied to solve a practical problem of solid flows: the natural failure process of soil and the resultant soil flows. The numerical results are compared with theoretical solutions, experimental data, and other numerical results by SPH and FDM to evaluate further L‐GSM performance. It shows that the L‐GSM scheme can give a very accurate result for all these examples. Both the theoretical analysis and the numerical testing results demonstrate that the proposed L‐GSM approach restores first‐order accuracy unconditionally and does not suffer from the tensile instability. It is also shown that the L‐GSM is much more computational efficient compared with SPH, especially when a large number of particles are employed in simulation.  相似文献   

5.
喻莹  许贤  罗尧治 《工程力学》2012,(6):63-69,84
有限质点法是以向量力学为基础的崭新的结构分析方法,该文将其应用到结构动力非线性行为分析中。该方法将结构离散为质点群,采用牛顿定律描述质点的运动,通过对质点行为的模拟和分析计算结构行为。该文介绍了有限质点法的基本思想,提出了该方法分析结构"动"与"静","线性"与"非线性"问题的独特思路。以杆系结构为例,推导了该方法求解结构动力反应,及几何、材料非线性问题的基本公式。通过三个数值算例,验证了该方法在结构动力非线性行为分析中的正确性和适用性。有限质点法在处理动力非线性问题时无需迭代求解和特殊修正,与传统方法相比在结构复杂行为分析中有明显的优势。  相似文献   

6.
In this paper, we present a dynamic refinement algorithm for the smoothed particle Hydrodynamics (SPH) method. An SPH particle is refined by replacing it with smaller daughter particles, which positions are calculated by using a square pattern centered at the position of the refined particle. We determine both the optimal separation and the smoothing distance of the new particles such that the error produced by the refinement in the gradient of the kernel is small and possible numerical instabilities are reduced. We implemented the dynamic refinement procedure into two different models: one for free surface flows, and one for post-failure flow of non-cohesive soil. The results obtained for the test problems indicate that using the dynamic refinement procedure provides a good trade-off between the accuracy and the cost of the simulations.  相似文献   

7.
Numerical simulation is an effective approach in studying cutting mechanism. The widely used methods for cutting simulation include finite element analysis and molecular dynamics. However, there exist some intrinsic shortcomings when using a mesh-based formulation, and the capable scale of molecular dynamics is extremely small. In contrast, smoothed particle hydrodynamics (SPH) is a candidate to combine the advantages of them. It is a particle method which is suitable for simulating the large deformation process, and is formulated based on continuum mechanics so that large scale problems can be handled in principle. As a result, SPH has also become a main way for the cutting simulation. Since some issues arise while using conventional SPH to handle solid materials, the total Lagrangian smoothed particle hydrodynamics (TLSPH) is developed. But instabilities would still occur during the cutting, which is a critical issue to resolve. This paper studies the effects of TLSPH settings and cutting model parameters on the numerical instability, as well as the chip formation process. Plastic deformation, stress field and cutting forces are analyzed as well. It shows that the hourglass coefficient, critical pairwise deformation and time step are three important parameters to control the stability of the simulation, and a strategy on how to adjust them is provided.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-020-00297-z  相似文献   

8.
In this paper, we present a numerical study on the performance of SPH in the case of a very viscous flow of a Newtonian liquid around a linear array of cylinders confined in a channel. This specific flow problem, being characterized by a complex mixing of both shear and extensional behaviour, allows to quantify systematically the accuracy of the standard SPH in, up to now, rarely considered complex geometries. Global accuracy tests based on the estimation of the dimensionless drag force acting on the cylinder as well as the inspection of the local velocity profiles are considered and compared with reference solutions. In agreement with previous findings, the impact of two numerical parameters, namely the smoothing length h and particle spacing Δx, is discussed and found to be crucial for the overall order of convergence of the method. In particular, accurate results can be obtained which are in very good agreement with standard mesh‐based methods provided that the number of neighbours is chosen properly. The present results, being based on a detailed convergence analysis in a complex flow problem, justify the applicability of the SPH method to more complex wall‐bounded flows upon critical choice of the model parameters and at the same time can serve as a useful benchmark test for further modelling improvement in the field. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A general algorithmic framework is established in this paper for numerical simulations of three‐dimensional fluid–particle interaction problems with a large number of moving particles in turbulent flows using a combined lattice Boltzmann method (LBM) and discrete element method (DEM). In this approach, the fluid field is solved by the extended three‐dimensional LBM with the incorporation of the Smagorinsky turbulence model, while particle interactions are modelled by the DEM. The hydrodynamic interactions between fluid and particles are realized through the extension of an existing two‐dimensional fluid–particle hydrodynamic interaction scheme. The main computational aspects comprise the lattice Boltzmann formulation for the solution of fluid flows, the incorporation of a large eddy simulation‐based turbulence model within the framework of the three‐dimensional LBM for turbulent flows, the moving boundary condition for hydrodynamic interactions between fluid and moving particles, and the discrete element modelling of particle‐particle interactions. To assess the solution accuracy of the proposed approach, a much simplified laboratory model of vacuum dredging systems for mineral recovery is employed. The numerical results are compared with the experimental data available. It shows that the overall correspondence between numerical results and experimental measurements is good and thus indicates, to a certain extent, the solution accuracy of the proposed methodology. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
姚学昊  黄丹 《工程力学》2022,39(10):17-25
针对涉及结构变形破坏的流固耦合(Fluid-structure interaction, FSI)问题,提出一种基于虚粒子和排斥力的近场动力学(Peridynamics, PD)-光滑粒子动力学(Smoothed particle hydrodynamics, SPH)耦合方法。结合PD方法求解不连续问题以及SPH方法在流体模拟方面的优势,分别采用PD方法与SPH方法求解固体域和流体域,并通过流体粒子-虚粒子接触算法处理流-固界面,既能利用粒子间排斥力有效防止粒子穿透现象发生,又能利用虚粒子修正流体粒子的边界缺陷,提高计算精度。采用PD-SPH耦合方法模拟静水压力作用下的铝板变形问题以及溃坝水流冲击弹性板问题,所得结果与解析解或其它数值结果吻合良好,验证了耦合方法的可行性和有效性。进一步应用耦合方法模拟了流体作用下的结构变形、破坏以及破坏后部分结构运动全过程,验证了PD-SPH耦合方法在流固耦合-结构破坏问题模拟方面的适用性。  相似文献   

11.
This study proposes smoothed particle hydrodynamics (SPH) in a generalized coordinate system. The present approach allocates particles inhomogeneously in the Cartesian coordinate system and arranges them via mapping in a generalized coordinate system in which the particles are aligned at a uniform spacing. This characteristic enables us to employ fine division only in the direction required, for example, in the through‐thickness direction for a thin‐plate problem and thus to reduce computation cost. This study provides the formulation of SPH in a generalized coordinate system with a finite‐deformation constitutive model and then verifies it by analyzing quasi‐static and dynamic problems of solids. High‐velocity impact test was also performed with an aluminum target and a steel sphere, and the predicted crater shape agreed well with the experiment. Furthermore, the numerical study demonstrated that the present approach successfully reduced the computation cost with marginal degradation of accuracy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The dual particle dynamic (DPD) methods which employ two sets of particles have been demonstrated to have better accuracy and stability than the co‐locational particle methods, such as the smooth particle hydrodynamics (SPH). The hybrid particle method (HPM) is an extension of the DPD method. Besides the advantages of the DPD method, the HPM possesses features which better facilitate the simulation of large deformations. This paper presents the continued development of the HPM for the numerical solution of two‐dimensional frictionless contact problems. The interface contact force algorithm which employs a modified kinematic constraints method is used to determine the contact tractions. In this method, both the impenetrability condition and the traction condition are simultaneously enforced. In the original kinematic constraints method, only the former condition is satisfied. A new formulation to find stress derivatives at stress‐free corners by imposing stress‐free boundary conditions is also developed. The results for 1‐D and 2‐D contact problems indicate good accuracy for the contact formulation as well as the corner treatment when compared to analytical solutions and explicit finite element results using the commercial code LS‐DYNA. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
14.
《Advanced Powder Technology》2019,30(12):2997-3009
During screening, a liquid stream, besides the vibration, can be applied for the acceleration of the separation. The discrete element method coupled with the smoothed particle hydrodynamics (DEM-SPH) is used to numerically analyse wet continuous screening here. Within the applied DEM-SPH a new simple model for the representation of the screening surface is suggested in this study. In this model, the influence of the screening surface on the fluid is represented using external forces, which act on the SPH particles in close vicinity of the screen. A required validation of the DEM-SPH method for the analysis of a vibrated particle-laden system is performed by comparing obtained DEM-SPH results with the results derived using the DEM coupled with finite volume method. The performed simulations of dry and wet continuous screening demonstrate that flowing water, in most simulated cases, accelerates the separation of particles. The presented study demonstrates the potential of the coupled DEM-SPH method for the analysis of wet screening processes. To our best knowledge, the simulation of wet screening using a two-way coupled numerical DEM-SPH approach not resolving the flow around individual particles is demonstrated in the scientific literature for the first time.  相似文献   

15.
Based on the discrete particle model for solid-phase deformation of granular materials consisting of dry particulate assemblages, a discrete particle–continuum model for modelling the coupled hydro-mechanical behaviour in saturated granular materials is developed. The motion of the interstitial fluid is described by two parallel continuum schemes governed by the averaged incompressible N–S equations and Darcy's law, respectively, where the latter one can be regarded as a degraded case of the former. Owing to the merits in both Lagrangian and mesh-free characters, the characteristic-based smoothed particle hydrodynamics (SPH) method is proposed in this paper for modelling pore fluid flows relative to the deformed solid phase that is modelled as packed assemblages of interacting discrete particles. It is assumed that the formulation is Lagrangian with the co-ordinate system transferring with the movement of the solid particles. The assumed continuous fluid field is discretized into a finite set of Lagrangian (material) points with their number equal to that of solid particles situated in the computational domain. An explicit meshless scheme for granular materials with interstitial water is formulated. Numerical results illustrate the capability and performance of the present model in modelling the fluid–solid interaction and deformation in granular materials saturated with water. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The smoothed particle hydrodynamics (SPH) method has proven useful for modeling large deformation of fluids including fluids with stress‐free surfaces. Because of the Lagrangian nature of the method, it is well suited to address the thermal evolution of these free surface flows. Boundary conditions at the interface of the fluid with a solid wall are usually enforced through the use of boundary particles. However, applying conditions at free surfaces, in particular gradient boundary conditions, can be problematic with traditional SPH formulations due to the degradation of the gradient approximation in these regions. Compounding this difficulty is that traditional approximations of the Laplacian operator suffer a similar degradation near free surfaces. A new SPH formulation of the Laplacian operator is presented, which improves the accuracy near free surface boundaries. This new form is based on a gradient approximation commonly used in thermal, viscous, and pressure projection problems, but includes higher‐order terms in the appropriate Taylor series. Comparisons with other approximations of second‐order derivatives are given. The discretization is tested by solving steady‐state and transient problems of thermal diffusion using the Backward Euler method with a GMRES solver. Boundary conditions are imposed through an augmented matrix. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A new numerical approach for solving incompressible two‐phase flows is presented in the framework of the recently developed Consistent Particle Method (CPM). In the context of the Lagrangian particle formulation, the CPM computes spatial derivatives based on the generalized finite difference scheme and produces good results for single‐phase flow problems. Nevertheless, for two‐phase flows, the method cannot be directly applied near the fluid interface because of the abrupt discontinuity of fluid density resulting in large change in pressure gradient. This problem is resolved by dealing with the pressure gradient normalized by density, leading to a two‐phase CPM of which the original singlephase CPM is a special case. In addition, a new adaptive particle selection scheme is proposed to overcome the problem of ill‐conditioned coefficient matrix of pressure Poisson equation when particles are sparse and non‐uniformly spaced. Numerical examples of Rayleigh–Taylor instability, gravity current flow, water‐air sloshing and dam break are presented to demonstrate the accuracy of the proposed method in wave profile and pressure solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we propose a Galerkin‐based smoothed particle hydrodynamics (SPH) formulation with moving least‐squares meshless approximation, applied to free surface flows. The Galerkin scheme provides a clear framework to analyse several procedures widely used in the classical SPH literature, suggesting that some of them should be reformulated in order to develop consistent algorithms. The performance of the methodology proposed is tested through various dynamic simulations, demonstrating the attractive ability of particle methods to handle severe distortions and complex phenomena. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
In Lagrangian particle-based methods such as smoothed particle hydrodynamics (SPH), computing totally divergence-free velocity field in a flow domain with the smallest error possible is the most critical issue, which might be achieved through solving pressure Poisson equation implicitly with higher particle resolutions. However, implicit solutions are computationally expensive and may be particularly challenging in the solution of multiphase flows with highly nonlinear deformations as well as fluid-structure interaction problems. Augmented Lagrangian SPH (ALSPH) method is a new alternative algorithm as a prevalent pressure solver where the divergence-free velocity field is achieved by iterative calculation of velocity and pressure fields. This study investigates the performance of the ALSPH technique by solving a challenging flow problem such as two-dimensional flow around a cylinder within the Reynolds number range of 50 to 500 in terms of improved robustness, accuracy, and computational efficiency. The same flow conditions are also simulated using the conventional weakly compressible SPH (WCSPH) method. The results of ALSPH and WCSPH solutions are not only compared in terms of numerical validation/ verification studies, but also rigorous investigations are performed for all related physical flow characteristics, namely, hydrodynamic coefficients, frequency domain analyses, and velocity divergence fields.  相似文献   

20.
This paper presents essential numerical procedures in the context of the coupled lattice Boltzmann (LB) and discrete element (DE) solution strategy for the simulation of particle transport in turbulent fluid flows. Key computational issues involved are (1) the standard LB formulation for the solution of incompressible fluid flows, (2) the incorporation of large eddy simulation (LES)‐based turbulence models in the LB equations for turbulent flows, (3) the computation of hydrodynamic interaction forces of the fluid and moving particles; and (4) the DE modelling of the interaction between solid particles. A complete list is provided for the conversion of relevant physical variables to lattice units to facilitate the understanding and implementation of the coupled methodology. Additional contributions made in this work include the application of the Smagorinsky turbulence model to moving particles and the proposal of a subcycling time integration scheme for the DE modelling to ensure an overall stable solution. A particle transport problem comprising 70 large particles and high Reynolds number (around 56 000) is provided to demonstrate the capability of the presented coupling strategy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号