首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 151 毫秒
1.
本工作研究了在铅酸电池负极活性物质中添加高比表面积活性炭对其微观结构与性能的影响。模拟电池实验结果发现,添加0. 5%的SPC04型活性炭可以使负极1C、5C、10C的放电容量分别提高18. 36%、42. 68%、44. 01%,2C 60 s的放电循环寿命提高1倍。6-FM-9F型实际电池测试结果表明,不仅在部分荷电态高倍率(HRPSo C)充放电条件下电池的循环寿命得到了显著提高,而且在完全充放电下电池的循环寿命也得到了显著提高。负极活性物质的微观结构测试结果表明,活性炭材料的加入可以明显改变其颗粒形貌和孔隙结构,活性炭可以使负极活性物质颗粒及孔隙分布较为均匀,粒径大小适中,增加了活性物质颗粒间有效孔径范围(0. 4~3μm)的占比。  相似文献   

2.
金属钴对储氢合金电极的表面修饰研究   总被引:2,自引:0,他引:2  
杨凯  吴锋  陈实  张存中 《功能材料》2005,36(11):1740-1743
运用真空蒸镀法时MH/Ni电池储氢合金电极进行了镀覆金属钴的表面修饰,测试了电池的放电容量、高倍率放电性能、循环寿命和充电时的内压,利用XPS和XRD时电极进行了表面和结构分析。实验结果表明,运用该方法对电极进行表面修饰可以降低电池内阻,提高电池的放电容量和放电电压,极片经过修饰的电池,5C(8.5A)放电容量提高了120mAh,放电平台电压提高了约0.05V,内阻降低了19.3%。极片经过表面镀钴后,显著改善了电池的循环性能,电池500周循环后的放电容量仍为初始容量的94.09/6,同时,电池在充电时的内压有了明显的降低,充电效率有了较大的提高。  相似文献   

3.
为了揭示温度对Ni/MH电池储氢合金负极电化学性能的变化规律和机理,以真空电弧熔炼法制备AB5型LaNi4.1Co0.6Mn0.3储氢合金为Ni/MH电池负极材料,研究了其在-35、0、30和50℃4个测试温度下的电化学性能。研究表明:随着温度的升高,合金电极的放电电压、容量和高倍率性能呈现先增加后降低的趋势,在30℃时合金电极的综合性能最优。在低温条件下,合金电极表面电荷转移速度和合金内部氢原子扩散能力降低导致高倍率性能恶化,高温条件下,储氢合金腐蚀加剧和氢化物稳定性显著降低合金电极的放电容量。  相似文献   

4.
为了研究镍氢电池正、负极材料中分别添加氢氧化钙和碳纳米管对镍氢电池电化学性能的影响,在研究过程中采用了两种方案,其一是在镍氢电池负极添加3%的碳纳米管的情况下,分别在电池的正极添加不同质量比例(0%、0.5%、1.5%、2%)的氢氧化钙,进行充放电容量和循环寿命的测试;其二是在镍氢电池负极未添加碳纳米管的情况下,分别在电池的正极添加同等比例的氢氧化钙,进行同样的测试。通过对实验结果的分析发现:碳纳米管复合镍氢电池放电容量比未添加碳纳米管的电池要高,其循环寿命也得到了较大改善;正极添加1%氢氧化钙的电池放电性能优于添加其他几种比例的电池放电性能。其中,负极添加3%碳纳米管、正极添加1%氢氧化钙的镍氢电池的充放电量和循环寿命等电化学性能最优。  相似文献   

5.
采用磷酸铁锂—石墨作为正负极材料制备超大容量叠片式单体电池(200Ah),分析两种不同化成工艺对锂离子电池性能的影响。分析了不同化成工艺后对应的电池负极的表面情况、电池内阻大小以及单体电池放电容量和循环性能等。结果显示,适当降低充电电压,有利于负极表面SEI膜的形成,并且形成的负极极片表面光滑,制备的电池具有更好的化成性能和循环性能。  相似文献   

6.
近年来,环境污染与化石能源日益匮乏,使得储能设备不断发展更新。电池作为新型储能设备在能源供给方面占有一定的优势。目前二次电池市场中使用最广泛的主要还是锂离子电池及铅酸电池。锂电池具有能量密度高、体积小等优点,有超越铅酸电池的趋势,但因低温容量衰减严重、高温易爆炸等缺点导致其使用受到一定的限制。而铅酸电池具有使用温度范围较宽、安全可靠以及售价低廉等优势,在工业使用方面更具有普遍性。铅酸电池在使用过程中也存在失效问题。目前铅酸电池失效模式主要起源于正负极早期容量损失、板栅腐蚀以及负极硫酸盐化等。作为混合动力汽车常用的动力来源,铅酸电池需在高倍率放电部分荷电状态(HRPSoC)下运行,此时,决定电池寿命的主要因素是负极是否失效。负极失效使得电池性能急剧下降、寿命缩短,而铅酸电池负极添加剂能够在不同程度上解决负极失效问题。本文对铅酸电池常用的负极添加剂的研究发展概况和存在的问题进行了阐述,并对其进行了展望。铅酸电池负极添加剂主要包括碳材料、导电聚合物、无机或金属氧化物等,可以提高电池负极活性物质(NAM)的利用率,改善大电流放电、低温充放电、快速充电等性能。同时碳、聚苯胺、无机或金属氧化物等材料的加入能够分担铅酸电池负极的部分充电电流,减缓大电流对负极的冲击、抑制负极铅硫酸盐化、提高电池高倍率放电部分荷电状态循环寿命、降低负极放电深度、升高电池析氢电位、降低电池失水。  相似文献   

7.
邓超  史鹏飞  曾佳 《功能材料》2004,35(Z1):1934-1937
探索了一种储氢合金表面修饰的新方法,应用HF和CuSO4混合溶液对MH/Ni电池负极AB5型储氢合金进行表面处理.研究了HF含量对合金表面修饰的影响,考察了修饰后合金电极的电化学性能,应用交流阻抗分析了表面处理对合金性能影响的作用机理.结果表明,表面修饰使合金表面活性增加,导电性增强,使合金电极具有更好的活化速度和高倍率放电能力.另外,表面修饰还抑制了合金的粉化、氧化,改善了合金电极的循环性能.因此,表面修饰合金作为MH/Ni电池负极材料可以更好的满足电动车用动力型电源的性能要求.  相似文献   

8.
锂离子电池因具有能量密度高、循环寿命长、质量轻、无记忆效应等特性,以及快速充放电等优点,因此成为近年来新型电源技术研究的热点,在高能量和高功率领域备受关注。作为锂离子电池的核心材料之一,隔膜的主要功能是使电池的正、负极分隔开来,阻止电子通过。隔膜性能的优劣直接影响着电池内阻、放电容量、循环使用寿命和电池安全性能的好坏。隔膜越薄、孔隙率越高、电池内阻越小,其高倍率放电性能就越好。  相似文献   

9.
MCMB颗粒度分布对锂离子电池性能的影响   总被引:8,自引:3,他引:5  
研究了锂离子电池中负极炭粉MCMB的颗粒度分布对电池性能的影响。试验结果表明,当颗粒度从11.12 μm 增大到24.81 μm 时,电池的第一次充放电效率由86.2 % 增加到90.5% ,即颗粒度大,放电容量高。但是,颗粒度大,循环寿命稍差。进一步研究表明,大小颗粒度的重量比为7:3 的MCMB粉末具有高放电容量和长循环寿命。  相似文献   

10.
采用真空电弧炉(在氩气保护下)制备Zr1-xTixMn0.4Cr0.4Ni1.2贮氢合金,通过XRD、SEM和恒流充放电研究了合金的相结构、形貌和电化学性能。结果表明:Ti为C14型Laves相的稳定性元素,随着Ti含量的增加,C14型Laves相增多,C15型Laves相减少。当x=0.1时,合金综合性能最好,表现出良好的活化性能、循环稳定性能和高倍率放电特性,在放电电流300mA/g的条件下,充放电循环50次,合金保持稳定的放电容量。当X〉0.1时,合金放电容量下降。Ti的加入使合金氢化物稳定性降低,加入少量Ti,有利于合金的放电容量的提高和高倍率放电性能的提高。  相似文献   

11.
为了改善镍氢电池负极材料的循环稳定性能, 采用真空感应电弧熔炼炉制备了V2Ti0.5Cr0.5Ni1-xMox (x=0.02~0.08)合金, 分析了不同含量的Mo替代Ni之后对合金电极的组织结构及电化学性能的影响。研究结果表明, 电极材料主要由BCC结构的V基固溶体主相和TiNi二次相组成, 随着合金中Mo替代Ni含量x由0.02增加到0.08, 合金电极的放电容量先增加后降低, 合金电极的循环稳定性能以及电化学动力学性能先得到改善而后降低, 合金电极的综合性能均在x=0.04时达到最好。  相似文献   

12.
高功率型和低温型镍氢电池用掺硼贮氢合金的研究   总被引:9,自引:0,他引:9  
Ni/MH电池负极的高倍率性能和低温放电性能的提高应当受到重视,采用廉价的硼镍合金(B-Ni)作为掺硼添加剂,有效地改善常用MlNi3.55Co0.75Mn0.4Al0.3贮氢合金的高倍率性能和低温放电性能,实验结果表明,掺硼合金由于形成含CeCo4B相的复相结构可显著提高合金的电化学动力学性能,掺硼的MlNi3.55Co0.75Mn0.4Al0.3B0.3合金能够满足高功率型Ni/NH电池的高倍率性能和低温型Ni/MH电池在低温-35℃下的小倍率放电(≤120mA/g)的要求。  相似文献   

13.
研究了含银添加剂对电池性能的影响。试验表明 ,在贮氢电极中添加 3 % (质量分数 )的银添加剂 ,明显降低了模拟电池气体的析出量。因而在贮氢电极中添加Ag类氧化还原催化剂是一种有效降低电池内压的方法  相似文献   

14.
机械合金化制备Mg-Ni合金氢化物电极材料的研究进展   总被引:2,自引:0,他引:2  
Mg-Ni系合金作为一种重要的Ni/MH电池负极材料, 一直受到电池工作者的广泛重视. 本文对机械合金化方法制备Mg-Ni系合金作为Ni/MH电池氢化物电极材料的研究现状进行了全面介绍, 综述了Mg-Ni系合金的电化学性能、微观结构、吸放氢机理以及合金的制备方法, 如二元合金化、多元合金化、复合合金化、表面改性等, 并就机械合金化方法制备Mg-Ni系合金作为Ni/MH电池负极材料的研究前景进行了分析和展望.  相似文献   

15.
采用真空快淬法研究制备了富铈稀土系低温贮氢合金,考察了3种不同组成合金的放电性能.结果表明,Mm(NiCoAlMn)_(4.95)舍金大电流放电性能较好;添加微量元素后,可以2提高其0.7C放电比容量、放电平台以及改善循环性能.经循环伏安性能测试发现,氢在合金电极中的扩散系数(D_H=3.90×10~(-8)cm~2/s)较大;XRD分析显示合金具有单一CaCu_5型相结构,晶粒尺寸小于50nm.用此合金组装的D8500型镍氢电池在-40℃、0.2C电流条件下,放电容量达到常温放电容量的70.72%.以1C电流充放电400次,电池容量保持率为93%,完全满足低温镍氢电池的要求.  相似文献   

16.
储氢合金表面包铜电极电化学性能研究   总被引:5,自引:0,他引:5  
采用化学镀铜法对储氢合金进行表面包覆,用包覆粉制成的储氢电极,其放电容量,大电流充放电性能均得到了改善,1C全充放循环100次,容量仅下降5%,未包覆粉制成的电极,其容量相应地损失了21%,用此包覆粉组装有Ni/MH电池,1C/0.2C达到95%,1C全充放循环200周期,容量衰减20%,此外,初步探讨了储氢合金表面包铜的得与失。  相似文献   

17.
高能密封镍氢动力电池及其电动汽车试运行   总被引:2,自引:0,他引:2  
采用泡沫镍电极制备工艺,研制开发了20-115Ah系列电动车用方型密封镍氢动力电池,单体电池比能量达60-70Wh/kg,电池比功率大于160W/kg,12V电池组比能量达54Wh/kg,电池可在-20-50℃下工作;电澉寿命仍在测试之中,该电池具有良好的过充、过放电能力。  相似文献   

18.
锆系Laves相贮氢电极材料具有电化学容量高、良好的高倍率放电性能、循环寿命长等优点,是一种具有广阔应用前景的新一代贮氢电极材料,本文对其研究进展进行了综合评述。  相似文献   

19.
利用简单易行的化学沉淀-回流法制备了Ni(OH)_2/还原氧化石墨烯(RGO)复合材料,研究了不同混合氨-碱沉淀剂对复合材料电化学性能的影响。采用XRD、拉曼光谱(Raman)和SEM表征Ni(OH)_2/RGO复合材料的微观结构和形貌。当以NH_3·H_2O-NaOH作为沉淀剂时,Ni(OH)_2/RGO复合材料中β-Ni(OH)_2纳米片均匀分散在石墨烯片层之间,形成相互插层结构。利用循环伏安(CV)、恒电流充放电(GCD)和电化学交流阻抗(EIS)测试了复合电极材料的电化学性能。研究结果表明:放电倍率为0.2C时,Ni(OH)_2/RGO复合电极材料的放电比容量达到344.8mAh/g,比β-Ni(OH)2的放电比容量高出约29%;5C时放电比容量为274.5mAh/g,经过50个循环,容量保持率为98.8%,呈现出良好的倍率性能和循环性能。  相似文献   

20.
The thin film Sn-Co-Ni alloy electrodes were prepared by electroplating on copper foil as current collector. The structure of the electroplated porous thin film Sn-Co-Ni alloy electrode is investigated by XRD, FE-SEM, and EDAX. The electrochemical performance is analyzed by using a battery cycler at the current rate of 0.1 C to cut-off potentials of 0.01 and 1.20 V vs. Li/Li+ and also cyclic voltammeter. Experimental results illustrate that the initial discharge capacity of the Sn-Co-Ni alloy anode is 717 mAh g−1. The discharge capacity has been in increasing order between 2nd and 10th cycling and then maintained the stable capacity. It is found that the charge and discharge capacity of thin film Sn-Co-Ni alloy electrode obtained an average reversibility behavior and the better cycle stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号