首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Due to the intrinsic layered structure, graphdiyne (GDY) strongly tends to form 2D materials, therefore, most of the current research are based on GDY 2D structures. Up to now, the synthesis of its ultrathin nanowires with a high aspect ratio has not been reported. Here, the ultrathin GDY nanowires with diameters below 3 nm are reported for the first time by a two-phase interface synthesis method, which has excellent crystallinity and an aspect ratio of more than 2500. Evidence shows that the GDY ultrathin nanowires are formed by the oriented-attachment mechanism of nanoparticles. The GDY ultrathin nanowires exhibit a significant quantum confinement effect, enhanced photoelectric effect, and promising applications in surface-enhanced Raman sensing.  相似文献   

6.
7.
The optimal geometries for reducing the radiative recombination lifetime and thus enhancing the quantum efficiency of III–V semiconductor nanowires by coupling them to plasmonic nanoparticles are established. The quantum efficiency enhancement factor due to coupling to plasmonic nanoparticles reduces as the initial quality of the nanowire increases. Significant quantum efficiency enhancement is observed for semiconductors only within about 15 nm from the nanoparticle. It is also identified that the modes responsible for resonant enhancement in the quantum efficiency of an emitter in the nanowire are geometric resonances of surface plasmon polariton modes supported at the nanowire/nanoparticle interface.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Semiconductor quantum‐dot (QD) systems offering perfect site control and tunable emission energy are essential for numerous nanophotonic device applications involving spatial and spectral matching of dots with optical cavities. Herein, the properties of ordered InGaAs/GaAs QDs grown by organometallic chemical vapor deposition on substrates patterned with pyramidal recesses are reported. The seeded growth of a single QD inside each pyramid results in near‐perfect (<10 nm) control of the QD position. Moreover, efficient and uniform photoluminescence (inhomogeneous broadening <10 meV) is observed from ordered arrays of such dots. The QD emission energy can be finely tuned by varying 1) the pyramid size and 2) its position within specific patterns. This tunability is brought about by the patterning of both the chemical properties and the surface curvature features of the substrate, which allows local control of the adatom fluxes that determine the QD thickness and composition.  相似文献   

16.
Semiconductor nanowires (NWs) have recently gained increasing interest due to their great potential for photovoltaics. A novel material system based on GaNP NWs is considered to be highly suitable for applications in efficient multi‐junction and intermediate band solar cells. This work shows that though the bandgap energies of GaNxP1‐x alloys lie within the visible spectral range (i.e., within 540–650 nm for the currently achievable x < 3%), coaxial GaNP NWs grown on Si substrates can also harvest infrared light utilizing energy upconversion. This energy upconversion can be monitored via anti‐Stokes near‐band‐edge photoluminescence (PL) from GaNP, visible even from a single NW. The dominant process responsible for this effect is identified as being due to two‐step two‐photon absorption (TS‐TPA) via a deep level lying at about 1.28 eV above the valence band, based on the measured dependences of the anti‐Stokes PL on excitation power and wavelength. The formation of the defect participating in the TS‐TPA process is concluded to be promoted by nitrogen incorporation. The revealed defect‐mediated TS‐TPA process can boost efficiency of harvesting solar energy in GaNP NWs, beneficial for applications of this novel material system in third‐generation photovoltaic devices.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号