首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 509 毫秒
1.
本文在将轮胎与路面之间的面接触引入车-桥耦合模型的基础上,进一步考虑车辆的横向自由度,从而提出一种新的车辆模型来研究移动车载作用下的桥梁横向振动。车辆轮胎被模拟成一个三维弹簧模型,轮胎与地面的接触面模拟成长方形,通过接触面间的位移协调条件和力相互作用建立车-桥耦合振动方程。考虑影响接触面间的横向力大小的三种重要参数如:滑移角、侧偏角、轮胎的“S”形运动对耦合系统的影响;并与炉坪大桥实测数据比较,验证本文方法的正确性,并分析了接触面积、车速等对横向振动的影响。  相似文献   

2.
重型汽车与路面的耦合作用研究   总被引:5,自引:3,他引:2       下载免费PDF全文
汽车采用七自由度整车模型,公路路面和路基用粘弹性地基上四端简支双层薄板模拟,建立了三维汽车-路面-路基耦合模型.利用Galerkin法和快速积分法得到了系统的动态响应,并比较了车路耦合模型与传统汽车、路面模型的计算结果,分析了车路耦合作用对车体加速度、悬架变形、轮胎力和路面振动位移的影响.研究发现,车路耦合作用不可忽视,有必要基于车路耦合模型对汽车和路面的动态响应进行同时求解.  相似文献   

3.
为研究弹性车体振动对车桥系统动力响应影响,将车体视为两端自由的均质等截面欧拉梁、转向架及轮对视为刚体,利用模态叠加法考虑简支梁变形,用轮轨密贴接触假设建立单车通过多跨简支梁的车桥系统动力学方程,并用Newmark-β数值积分法求解系统动力响应。以一系列正弦不平顺为系统激励,研究不平顺激扰下弹性车体共振与消振现象。结果表明,弹性振动主要改变车体的振动量,对桥梁振动反馈作用较小;弹性车体共振被激发时其动力响应被显著放大,共振速度由车辆定距与车体弹性自振频率决定;因存在轴距滤波,当不平顺波长满足弹性车体消振发生条件时车体动力响应被显著抑制。  相似文献   

4.
结合悬臂输液管流固耦合理论,建立泵车臂架结构与混凝土的流固耦合动力学方程,从流固耦合的角度分析混凝土泵车臂架振动问题。通过试验测试获得混凝土脉动流速图以及仿真边界条件。采用Newmark-β法求解动力学方程,仿真分析了混凝土流动为脉动和常速流时臂架振动响应,发现振动位移响应基本吻合,说明脉动流速对臂架结构应力历程影响较小;仿真分析转台振动为零振动时,混凝土脉动和常速流时臂架振动响应,发现泵送油缸导致的车体振动激扰是臂架振动的主要因素,在臂架系统振动研究时应重点考虑。  相似文献   

5.
地震作用下高速列车与桥梁耦合振动分析   总被引:1,自引:1,他引:0       下载免费PDF全文
摘要: 为了研究地震作用下高速列车与桥梁耦合振动特性,通过分析JR300系列轮轨高速列车与高架桥在地震作用下的耦合振动,对轨道不平顺、不同地震波对耦合振动响应的影响进行比较研究。结果表明:轨道竖向不平顺会加大车体振动竖向加速度,在地震作用下,车体加速度会接近或超过规定限值;桥梁在地震与列车作用下,考虑轨道的竖向不平顺对桥梁的竖向响应影响较小;不同地震波激励对车桥振动响应影响有较大不同。  相似文献   

6.
中下承式拱桥吊杆应力冲击系数不均匀性研究   总被引:2,自引:2,他引:0  
为研究中下承式拱桥在公路车辆作用下的吊杆冲击系数不均匀性问题,提出基于车桥耦合振动的公路桥梁动力响应分析方法。首先,将车辆简化为4个自由度的整车模型,根据D’Alembert原理推导了车辆振动方程,将桥梁离散为有限元模型,根据车辆与桥梁接触点处位移与力的协调条件耦合二者的振动方程;然后,采用Newmark-β算法,基于MATLAB语言编制了公路桥梁车桥耦合振动计算程序VBAP;最后,以某钢管混凝土拱桥为例,利用该方法与程序分析结构阻尼、桥上路面粗糙度、车重及车速对吊杆应力冲击系数的影响。  相似文献   

7.
肖祥  任伟新   《振动与冲击》2013,32(3):157-162
基于车—桥振动桥梁变形后的构形,建立了考虑桥梁变形的车—桥耦合模型。类似于结构抗震分析中,将地震作用下结构的动位移分解为拟静力位移和结构动位移,本文将车辆的运动分解为整体顺着桥面运行和相对自身局部系统的振动。以单轴车辆—简支梁桥为例,建立了基于桥梁变形后构形的车—桥系统竖向振动方程。最后,通过简支梁数值算例对由于桥梁变形产生的附加力进行了分析和研究。  相似文献   

8.
为合理分析和计算波形钢腹板PC简支箱梁桥局部与整体的动力冲击系数,分别建立了波形钢腹板PC箱梁桥和车辆结构的振动方程,并根据车轮与桥面的接触关系形成两者耦合振动的动力方程。采用MATLAB和ANSYS软件分别建立了三维的车辆模型和波形钢腹板PC箱梁桥的有限元模型,并在考虑路面平整度随机激励的作用下,利用MATLAB软件求解了车桥耦合系统的动力方程,得到桥梁结点的位移振动响应;依据动位移与静位移的关系,计算出了波形钢腹板PC箱梁桥的局部及整体的动力冲击系数;对所求得的局部及整体动力冲击系数进行了不同车辆类型、不同车道数加载,不同行驶速度和不同路面情况下的参数分析,并与我国现行规范和美国现行AASHTO规范进行对比分析,最终提出了波形钢腹板PC简支箱梁桥局部及整体动力冲击系数的合理确定方法,所得结论可为波形钢腹板PC箱梁桥动力冲击系数的确定提供参考。  相似文献   

9.
研究车桥耦合振动引起的车辆舒适性问题对合理设计桥梁结构,从而减小车桥耦合振动响应和提高司乘人员的乘坐质量具有重要意义。分别利用有限元法和达郎伯原理建立了大跨度公路斜拉桥三维模型和9个自由度的车辆空间模型。通过位移和力的协调条件将车桥两个子系统耦合起来,求解车桥系统的振动微分方程。基于计算机软件ANSYS中的APDL语言编写了求解振动微分方程迭代计算的命令流,以ISO2631-1-1997标准建立了评价车辆舒适性的方法,并据此分析了主跨为550 m的福建长门大桥在多车辆通过时考虑不同车速和车重时的车辆动力响应和车辆舒适性。计算结果表明,随着车速的增加,车辆的动力响应增加,舒适性变差;而随着车重的增加,车辆的动力响应减小,舒适性变好。  相似文献   

10.
计算履带车辆在软土路面上行驶时振动特性的基础在于研究土壤承压特性,然而目前以贝克公式为代表的土壤承压模型缺乏考虑剪应力因素、加卸载因素和加载速率因素。通过物理试验结合仿真试验的手段在贝克公式基础上,综合考虑这三种因素影响,建立了改进土壤承压模型。建立了某型履带车辆的动力学模型,基于改进土壤承压模型进行了履带车辆行驶振动特性仿真研究,研究结果显示,与贝克公式相对比,基于改进土壤承压模型计算得到的车体冲击加速度峰值以及平均值要小,而履带板的沉陷量要大。研究结论可以为预测履带车辆在软土路面上行驶时的下陷量、行驶阻力、振动特性以及牵引特性等性能提供参考。  相似文献   

11.
为分析非平稳行驶条件下重型汽车轮胎附加动载特性、探讨与匀速平稳行驶工况下的差异,基于车辆行驶动力学理论,建立三轴重型汽车系统动力学模型和路面非平稳随机激励时域模型,采用MATLAB/Simulink软件仿真分析了车辆非平稳行驶条件下轮胎动载的响应规律,并与匀速平稳行驶条件下的分析结果进行比较。结果表明:车辆加速时轮胎动载荷幅值变大、减速时动载荷幅值减小;车辆等时通过同一段道路时,匀速平稳行驶时的动载荷较小;随着加速度、初速度和路面不平度的增加,动载荷幅值变大。研究结果可为精确模拟车辆轮胎动载荷、道路友好性分析和路面损伤破坏预测提供参考。  相似文献   

12.
人-车-路耦合系统振动分析及舒适度评价   总被引:3,自引:1,他引:2       下载免费PDF全文
基于人体动力模型和7自由度全车模型,路面采用Kelvin地基上Euler梁进行模拟,通过车轮与路面接触处的位移协调方程和车路相互作用力的平衡关系建立人-车-路耦合振动方程,采用New-mark积分法对方程组进行求解。对小型汽车在路面上行走过程进行了仿真分析,采用乘坐舒适度指标对人体振动舒适性进行评价,为从乘坐舒适度角度来评价路面不平顺提供了理论依据,并对路面级别、车速、乘坐者数量以及车辆各参数对系统振动的影响进行了初步讨论。  相似文献   

13.
现有分析车-桥耦合振动的研究中都假设移动车辆与路面的接触关系为点接触。事实上,轮胎与路面是通过面接触的。通过建立新的三维车轮模型,分析了面接触对车-桥耦合振动的影响,将车轮与路面的接触面模拟为长方形,通过接触面间的位移协调条件和力相互作用建立车-桥耦合振动方程。对车速、车轮刚度与阻尼、接触面尺寸大小、车辆数目等进行参数分析,研究了接触面对车-桥耦合振动的影响。数值计算与试验结果验证表明:所提出的模型能更准确合理的研究车桥耦合振动。  相似文献   

14.
目的利用传感器搭配数据采集卡收集路面不平频谱,将路面信息匹配标准路面等级以及车辆行驶速度。方法通过Matlab将标准PSD与随机激励匹配路面等级,同时建立1/2四轴重卡动力学模型,并用能量法建立动力学方程。将收集的路面不平频谱对应到相应的路面等级,再结合车辆速度的设定,最后求解得到车辆受激励后轮胎的动载位移频谱,分析得出被运输包装物的半挂车平板动载位移。结果重卡运输前轴轮胎在A级路面以60 km/h的车速经过该路面的动载位移量在0.8和9.8 s时达到峰值,且路面响应位移不超过6 cm。结论求得被运输包装物的所受激励频谱,为被包装物的运输振动安全性研究提供支撑,可结合具体被运输包装物的脆值理论,提供被运输物品发生运输损坏的数值仿真。  相似文献   

15.
车、路的相互作用下沥青路面动力学特性分析   总被引:4,自引:3,他引:1       下载免费PDF全文
文中采用二自由度四分之一汽车悬架模型模拟汽车系统,依据弹性层状体系理论,建立路面结构的三维有限元分析模型,考虑车路相互作用,采用ANSYS有限元分析软件对移动车辆荷载作用下路面各结构层中的位移、应力、应变进行了模拟。计算分析了行车速度、悬架刚度、悬架阻尼、轮胎刚度和轮胎阻尼五个参数对路面动力响应的影响。结果表明:沥青面层处于三向受压状态,层内切应力是引起其破坏的主要原因;最大水平拉应力和最大横向拉应力均发生在路面结构的基层和底基层结合处;车速对路面动态响应的影响规律很复杂,应考虑车辆模型和路面不平整度,并划分速度区间加以探讨;路面动态响应随轮胎刚度、悬架刚度和悬架阻尼的增大而减小。上述结论对于深入分析路面结构动力响应与疲劳损坏以及研究车辆与路面相互作用的机理有重要价值。  相似文献   

16.
防爆胶轮车动态特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为掌握防爆胶轮车的动态特性,了解其动态应力,应变情况,应用多体系统动力学以及有限元法对其动态特性进行了研究.基于ADAMS建立了胶轮车的虚拟样机模型,利用多体动力学仿真得到胶轮车在矩形坑路谱下各部件与车架铰接点的动态载荷曲线;基于ANSYS建立了胶轮车车架的有限元模型,并将动力学仿真得到的随机激励峰值加载到典型工况约束...  相似文献   

17.
庞辉  彭威  原园 《振动与冲击》2014,33(6):156-160
为提高车辆行驶平顺性、减小轮胎对路面的动载荷,以某重载车辆空气悬架系统为研究对象,建立四自由度1/2车辆多目标优化模型,提出改进的多目标自适应遗传算法对悬架参数进行优化。与一般遗传算法相比,车身垂向加速度、前后轮动载荷有效值约减小10%,目标函数值改善度降低57.03%。该方法不仅能提高车辆行驶稳定性,且可减小轮胎对路面的动载荷,已进一步证明该方法的有效性及可行性。  相似文献   

18.
考虑车轮-路面接触长度的桥头跳车动力荷载分析   总被引:1,自引:0,他引:1       下载免费PDF全文
对车辆经过桥头错台时的动力荷载进行分析,提出考虑轮胎-路面接触长度的车轮模型,并计及车轮的滚动轨迹。结合有限元动力学分析方法,对车辆上、下桥头错台时的动力荷载进行定量分析。数值仿真表明:考虑接触长度的模型更符合车轮与路面接触的实际情况,动力荷载计算值较平缓;下桥跳车时车轮脱空的临界速度计算值大大提高,10 mm错台跳车临界速度约60 km/h;跳车动力荷载与车轮悬挂方式、车速、跳车高度等有关,可由此控制轮载冲击系数;考虑车轮-路面接触长度后,桥头错台跳车的冲击系数仍较大。车辆以30 km/h以上速度通过10 mm错台时,冲击系数超过我国桥梁规范设计值,需引起重视。  相似文献   

19.
建立两自由度1/4车辆半主动空气悬架的非线性动力学模型,提出一种基于参数自调整的模糊控制系统结构的模型,并以C级路面为随机输入,对空气悬架系统进行了仿真分析。研究结果表明:该控制方法能够使车身垂直振动加速度、悬架动挠度和车轮动载荷得到较大的衰减,提高了汽车的操纵稳定性能和平顺性能。  相似文献   

20.
During the past ten years, there has been a significant trend in automotive design using low aspect ratio tires and increasingly run‐flat tires as well. In recent publications, the influence of those tire types on the dynamic loads – transferred from the road through the wheel into the car – have been examined pretty extensively, including comparative wheel force transducer measurements as well as computational results. It can be shown that the loads to the vehicle tend to increase when using low aspect ratio tires and particularly when using run‐flat tires. These tires provide higher stiffnesses while simultaneously introducing larger nonlinearities in the sidewall behavior [1–3]. Depending on manufacturer and the combination of vehicle size and wheel properties, these deformations can be so large that the tire belt and/or sidewall have contact with the rim crown (protected by the tire sidewall). The full vehicle simulation on virtual proving grounds is well established and important for the vehicle product development process. One of the most important subsystems in the virtual load assessment process, using full vehicle simulation is the tire model. The precision of that is essential for the overall accuracy of the virtual method. So the tendencies described above strongly require adaptations and improvements in the field of tire modeling. In 2007, Fraunhofer LBF together with Honda R&D started to examine the influences of low aspect ratio and run flat tires for the accuracy of full vehicle simulation results for durability relevant scenarios [3–5]. Those activities were the starting point for a four years joint activity to extend the usability of the virtual load prediction method by full vehicle simulation to application for which strong nonlinearities in the tire (large very transient deformation), but also in the vehicle model itself occur. As a part of that joint development, this paper summarizes the activities of Fraunhofer LBF to develop a dedicated tire model, which can accurately handle very large deformations of the tire up to misuse‐like applications. The model is based on the LBF tire model CDTire. In the first chapter several nonlinear extensions of the belt and sidewall model will be described which have been implemented to capture the large deformation behavior. These model extensions are also taking into account the belt‐to‐sidewall and sidewall‐to‐rim contact. To validate and to parameterize these model extensions, Fraunhofer LBF built a dedicated flat track test rig, which can be used to realize “roll‐over‐cleat” experiments using huge obstacles, so that belt‐to‐sidewall and sidewall‐to‐rim contact can be forced. This test rig will be described in chapter 2. The third chapter is dealing with the interface of the new tire model to a flexible rim. While the load transfer from road via tire into the vehicle is relatively easy to detect, for example by using wheel force transducers, the local forces acting on the rim flanges as well as on the wheel well (when e. g. passing a curb) are much more difficult to detect (in measurement as well as in simulation). LBF developed a method to detect local tire‐to‐rim interface forces and manage flexible rim simulation in Multi‐Body‐Simulation (LMS Virtual. Lab Motion – [6]). One key issue of the overall method is the capability of the tire model to predict local rim forces on the rim flanges in a suitable way. The second key issue is to combine the tire with a model of a flexible rim (which is embedded in a full vehicle MBS model). This method can be used to perform virtual load prediction of local, transient rim forces, which are the basis for CAE based fatigue life prediction of wheels applying typical durability test track and abuse load events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号