首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氮磷无卤阻燃剂阻燃玻纤增强尼龙6的研究   总被引:9,自引:0,他引:9  
采用热聚合的方法制备了氮磷无卤阻燃剂M PP,用于阻燃玻纤增强尼龙6。通过在阻燃体系中引入成炭催化剂杂多酸(HPA)和阻燃改性剂(CR),成功地解决了玻纤增强尼龙6燃烧时的“烛芯效应”问题。系统研究了HPA和CR对玻纤增强尼龙6阻燃性能的影响。结果表明,所制备的阻燃剂M PP是由三聚氰胺聚磷酸盐和三聚氰胺焦磷酸盐构成,以前者为主。杂多酸和CR对M PP具有协效阻燃作用,加速了尼龙6燃烧时的成炭化学反应,改善了炭层结构。当在阻燃体系中添加2%的杂多酸和2%的CR时,玻纤增强尼龙6可达到UL 94 1.6 mm V-0级的阻燃性能,并具有良好的力学性能。  相似文献   

2.
以聚磷酸铵(APP)和季戊四醇(PER)为原料组成的膨胀阻燃剂(IFR),以热塑性聚氨酯弹性体(TPU)为聚合物成炭剂,采用熔融共混法对聚丁二酸丁二醇酯(PBS)进行阻燃改性,并考察IFR分布位置对PBS/TPU共混物阻燃性能的影响。通过极限氧指数(LOI)、垂直燃烧、锥形量热分析、热重分析、流变性能测试和扫描电子显微镜(SEM)等对PBS/TPU/IFR阻燃复合材料进行了测试与表征。结果表明:成炭剂TPU的加入,可显著地提高PBS/IFR共混体系的阻燃性能,如当体系中不含TPU时,IFR含量为20%时,PBS/IFR共混体系的LOI为20.0%,UL 94垂直燃烧等级为无等级;而当体系中加入TPU后,不管IFR分布位置如何,其LOI可达28%左右,UL 94垂直燃烧等级为V-2。在IFR含量为25%时,IFR的分布位置对阻燃性能也有影响,当IFR直接分布于PBS相时,其UL 94垂直燃烧等级为V-0,优于IFR分布于TPU相的V-2级。  相似文献   

3.
无卤阻燃PES热熔胶的制备与阻燃性能   总被引:1,自引:0,他引:1  
以聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)组成的膨胀阻燃体系(IFR)作为阻燃剂,以4A分子筛作为协效剂,制备了无卤阻燃共聚酯(PES)热熔胶。研究了IFR对PES阻燃性能的影响及4A分子筛的协效作用。结果表明,少量4A分子筛可促进IFR的阻燃作用。IFR添加量为30%时,阻燃PES氧指数达30.7%,垂直燃烧达V-0级,最大热释放速率大幅降低;加入3%的4A分子筛,氧指数达35.1%。热重分析(TG)、扫描电镜(SEM)及X射线光电子能谱(XPS)结果表明,少量4A分子筛可催化IFR酯化反应,促进体系形成致密炭层,高温时4A分子筛分解并参与成炭反应,稳定炭层。  相似文献   

4.
纳米金属氧化物对膨胀阻燃聚丙烯体系的阻燃协效性研究   总被引:3,自引:0,他引:3  
本文把合成的一种三嗪成炭剂与APP及纳米金属氧化物复配成IFR,用于阻燃PP。研究了纳米金属氧化物对PP-IFR体系的阻燃性能、力学性能及热降解行为的影响。实验结果表明:纳米金属氧化物与JFR之间都有极强的协效作用。当IFR总量固定在20%,纳米金属氧化物在PP体系中添加量只占0.2%时,就能将UL-94垂直燃烧等级由无级别提高到VO级。在氧化物添加量为1%时PP体系阻燃性能最优,氧指数最高达35.0。力学性能测试表明,纳米金属氧化物的种类与加入量对材料的力学性能影响均不大,其中对拉伸强度无影响,弯曲强度稍有提高。通过TG测试表明.纳米金属氧化物的加入能够极大地提高IFR自身的成炭量和降低IFR自身的降解速率.并能提高pp的热稳定性及高温时的成炭量。  相似文献   

5.
聚苯醚(PPO)和含P-N膨胀型阻燃(IFR)复配使用,实现了聚苯乙烯(PS)的阻燃。通过X射线衍射、热重分析和极限氧指数分析和表征IFR/PPO/PS复合材料的断面形貌,热稳定性和阻燃性能。并通过对数据的分析,讨论了PPO和IFR对PS炭化和阻燃性能的影响。结果表明,PPO和IFR的结合可以有效地提高复合材料的阻燃性能。添加20%的PPO和40%的IFR就可以使极限氧指数达到30.2%,并明显提高了成炭性能。此外,碳质泡沫层,隔热效果、阻燃和抑烟效果都比较好。通过一系列的数据分析可以发现PPO和IFR的组合表现出协同阻燃作用。  相似文献   

6.
膨胀型阻燃剂(IFR)是现今发展较快的一类新型阻燃剂。用其阻燃聚烯烃,取得了明显的阻燃效果。我们实验室曾合成了成炭剂CA,与APP复配用于阻燃LDPE,取得了良好的效果。在总添加量为30%,当CA:APP为4:11时,LOI可达31.2,垂直燃烧为V-0级。基于此,我们把CA、APP体系用于阻燃PP,  相似文献   

7.
金静  王昊 《材料导报》2016,30(18):70-74
选用有机蒙脱土(OMMT)作为膨胀型阻燃剂(IFR)的协效剂,对聚丙烯/乙烯辛烯共聚物增韧共混体系(iPP/POE)进行阻燃改性,制备了iPP/POE/IFR/OMMT复合材料。利用氧指数仪、垂直燃烧测试、锥型量热仪、热失重分析和力学性能测试对材料的性能进行表征,系统研究了OMMT与IFR的配比对膨胀阻燃增韧共混体系阻燃性能及力学性能的影响。结果表明,OMMT的加入可催化材料的成炭过程,复合材料的燃烧性能得到明显提升,燃烧过程中熔融滴落的现象得到改善,同时热量以及有毒烟气释放量显著降低,而复合冲击强度也有一定提升。其中综合性能最优的配比是添加2%(质量分数)的OMMT和23%(质量分数)的IFR,其热释放速率峰值、平均热释放速率、平均质量损失速率以及生烟量较iPP/IFR/POE分别降低了28%、20%、17%以及95%,而冲击强度则提高了36%。研究结果为聚烯烃共混物阻燃改性的应用提供了指导。  相似文献   

8.
膨胀阻燃剂对EVA阻燃和力学性能的影响   总被引:1,自引:0,他引:1  
以聚磷酸铵(APP)、三嗪系成炭发泡剂(CFA)和4A分子筛(4AZEO)作为乙烯-醋酸乙烯酯共聚物(EVA)的膨胀阻燃剂(IFR)。采用氧指数、垂直燃烧研究了APP与CFA的不同配比、IFR不同添加量对阻燃材料阻燃性能的影响,并对其力学性能进行测试。当IFR总添加量为28%,APP/CFA质量比为3∶1时阻燃EVA材料显示出较好的阻燃效果,其氧指数为33.8,垂直燃烧达到UL-94V0级。采用热失重法证实了配比合理的膨胀阻燃剂能够促进EVA在高温时的成炭,最后采用扫描电镜法对残炭外貌进行了表征。  相似文献   

9.
一种膨胀阻燃PP体系及其燃烧性能   总被引:1,自引:0,他引:1  
制备了一种阻燃聚丙烯/膨胀阻燃剂(IFR)/蒙脱土(MMT)膨胀阻燃体系,研究了不同阻燃组分含量对体系阻燃性能的影响。结果表明,阻燃剂总添加量为30%,其中的成炭剂和聚磷酸铵(APP)的配比为1∶2时,体系的极限氧指数为29%,垂直燃烧试验(UL-94)达到V-2级;而在上述体系中添加0.5%的MMT时,体系的LOI提高到31%,垂直燃烧试验(UL-94)通过V-0级,表现出较好的协同阻燃效果。采用扫描电境(SEM)和红外光谱(FT-IR)对体系的固相残炭进行了观察和分析,探讨了可能的阻燃机理。  相似文献   

10.
选用丙烯酸接枝聚丙烯(PP-g-AA)、马来酸酐接枝聚丙烯(PP-g-MAH)及N-羟甲基丙烯酰胺接枝聚丙烯(PP-g-NMAM)3种相容剂来改善聚磷酸铵/季戊四醇膨胀型阻燃剂(IFR)与聚丙烯的相容性。力学性能和扫描电镜(SEM)分析结果表明,PP-g-MAH/PP/IFR具有较好的相容性及力学性能,能较好地解决阻燃剂在聚丙烯体系中的团聚现象。氧指数(LOI)和垂直燃烧UL94测试结果表明,相容剂的加入对PP/IFR体系的燃烧性能影响不大,PP-g-MAH效果最佳,加入10%的PP-g-MAH,IFR的含量为30%时,LOI达到32.8%,UL94测试达到V-0级。热分析发现,季戊四醇和聚磷酸铵是通过酯化反应成炭而形成一层保护膜,保护膜起到隔热隔氧的作用而阻燃。  相似文献   

11.
因玻纤"烛芯效应"制备阻燃玻纤增强聚合物复合材料是具有挑战性的课题。文中以自制的膨胀型阻燃剂MPAL与八乙烯基倍半硅氧烷(OV-POSS)组成的复合阻燃剂阻燃玻纤增强聚丙烯(PP),研究了玻纤(GF)和增容剂马来酸酐接枝聚丙烯(MAPP)对阻燃PP体系的阻燃性能和力学性能的影响,结合扫描电镜和热重分析探讨了相应阻燃机理。结果表明,在阻燃PP体系中加入玻纤及适当增加其含量会显著改善阻燃PP材料的阻燃性能,归因于加入玻纤提高了阻燃PP体系的热稳定性以及利用MPAL/OV-POSS分解形成的复合炭层覆盖于玻纤表面,从而达到阻断玻纤"烛芯效应"目的。此外,加入增容剂MAPP及适当增加其含量会明显提高阻燃玻纤增强PP复合材料的力学性能,但对材料阻燃性能改善有限,归因于MAPP对体系界面结合和相容性的显著改善作用。当玻纤和MAPP质量分数分别为30%和5%时,所得阻燃玻纤增强PP复合材料具有优异的综合性能,表现出良好的应用前景。  相似文献   

12.
研究了成炭剂种类及其复配技术对超薄膨胀型钢结构防火涂料性能的影响。通过对炭层密度和显微结构的分析,认为多官能团(-OH)成炭剂的加入,可有效提高炭层的致密度和强度,增强综合防火性能;高温燃烧实验结果显示,成炭刺1/成炭剂2=6.0~7.4为比较合适的复合成炭剂配比;DMTA研究了高温状态下两种成炭剂对涂膜粘弹性和强度的不同贡献,从动态力学的角度对两种成炭剂成炭机理进行了分析;中试实验结果表明,双组分成炭剂的协同作用,较大幅度提高了膨胀型防火涂料的阻燃隔热性能。  相似文献   

13.
以改性天然碳水化合物结合碱式硫酸镁晶须(MHSH)混杂纤维为协效剂,结合膨胀阻燃剂(IFR)制备了阻燃型聚丁二酸丁二醇酯(PBS)木纤维复合材料。利用极限氧指数和垂直燃烧测试研究了复合材料的阻燃性能,并采用TG/DTA-MS对复合材料的热解过程、吸放热量和热解燃烧气体产物进行了分析。结果表明,5%的木薯渣作为碳源代替PBS提高了材料的阻燃性能。IFR/木薯渣/MHSH阻燃剂能够有效提高PBS的燃烧初始温度,并缩小燃烧温度范围。阻燃材料燃烧时,首先是IFR受热分解产生不可燃气体氨气在材料表层形成第一层阻燃保护层;其次,材料迅速燃烧产生的炭层形成第二层阻燃保护层;最后,在高温段MHSH分解形成第三层协效阻燃保护层。因此,最终形成了由外层不可燃气体氨气和内层天然碳水化合物MHSH膨胀炭层构成的气-固阻燃屏障,从而有效地提高了复合材料的阻燃性能。  相似文献   

14.
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配成膨胀型阻燃剂,氧化镧(La2O3)为阻燃协效剂,制备了阻燃性能良好的膨胀型阻燃聚丙烯复合材料(PP/IFR)。研究了La2O3用量对PP/IFR体系阻燃性能的影响及阻燃协同作用机理。结果表明,添加少量的La2O3可显著提高PP的阻燃性能;当La2O3质量分数为1%时,PP/IFR的氧指数高达31.0%。热重分析(TGA)、红外光谱(FT-IR)、激光拉曼光谱(LRS)分析和电子扫描显微镜(SEM)观测结果表明,添加La2O3能促进残炭转化为聚芳烃结构,形成更多的结晶碳,提高炭层的强度,并催化IFR的酯化交联反应,形成更多的P-O-P和P-O-C交联网络结构。  相似文献   

15.
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配成膨胀型阻燃剂,氧化镧(La2O3)为阻燃协效剂,制备了阻燃性能良好的膨胀型阻燃聚丙烯复合材料(PP/IFR)。研究了La2O3用量对PP/IFR体系阻燃性能的影响及阻燃协同作用机理。结果表明,添加少量的La2O3可显著提高PP的阻燃性能;当La2O3质量分数为1%时,PP/IFR的氧指数高达31.0%。热重分析(TGA)、红外光谱(FT-IR)、激光拉曼光谱(LRS)分析和电子扫描显微镜(SEM)观测结果表明,添加La2O3能促进残炭转化为聚芳烃结构,形成更多的结晶碳,提高炭层的强度,并催化IFR的酯化交联反应,形成更多的P-O-P和P-O-C交联网络结构。  相似文献   

16.
以膨胀型阻燃剂(IFR)和自制的有机蒙脱土(OMMT)协同阻燃剂对线型低密度聚乙烯(LLDPE)进行阻燃改性,研究了阻燃剂和协同阻燃剂对LLDPE燃烧性能、力学性能的影响。运用极限氧指数(LOI)和热重分析(TGA)表征了LLDPE的阻燃性能,通过扫描电子显微镜(SEM)观察燃烧残余物的炭层形貌。结果表明,OMMT的加入增强了LLDPE/IFR体系的阻燃性能和力学性能,且在一定程度上解决了体系燃烧时的熔滴和浓烟现象;当IFR用量为30份,有机蒙脱土用量为2%时,体系的极限氧指数达到25.2%,燃烧残余物形成致密的炭层。  相似文献   

17.
将三嗪成炭剂(CFA)与聚磷酸铵(APP)复配成膨胀型阻燃剂(IFR),采用极限氧指数、垂直燃烧和锥形量热等测试研究了不同CFA和APP的比例对动态硫化热塑性弹性体(TPV)阻燃性能和力学性能的影响;并用扫描电子显微镜、拉曼光谱、X射线衍射和红外光谱分析了残炭的形貌和结构,进一步研究了其成炭机制。研究结果表明,当CFA和APP的质量比为1∶3,总添加量为40%(质量分数)时,TPV/IFR复合材料具有最佳的阻燃性能,LOI达到26.4%,且通过UL-94 V-0级;锥形量热测试表明,TPV/IFR复合材料具有优异的阻燃和抑烟性能;力学性能测试表明,TPV/IFR复合材料仍具有优异的力学性能,其拉伸强度和断裂伸长率分别为4.19 MPa和391.06%;残炭的形貌和结构分析表明,TPV/IFR复合材料以凝聚相成炭阻燃作用为主,燃烧后形成含有P-O-C和P-O-P交联结构的致密石墨焦炭层,起到隔热隔氧的作用,提高了材料的阻燃性能。  相似文献   

18.
采用聚磷酸铵(APP)、三聚氰胺氰脲酸盐(MC)和聚苯醚(PPO)复配制备膨胀阻燃剂(IFR),与阻燃协效剂间苯二酚双(二苯基磷酸酯)(RDP)进行聚乙烯(PE)阻燃。借助氧指数、垂直燃烧测试,探讨IFR与阻燃协效剂RDP间的协效性,研究RDP不同添加量对IFR阻燃复合材料燃烧性能的影响,并对其力学性能进行测试。利用TG,DTG热分析技术对协效性进行验证。结果表明:RDP与IFR具有阻燃协效作用,RDP的协效性主要在热分解的第一阶段发挥作用,可催化APP提前分解,RDP的加入降低了热分解过程的热释放量,促进了多孔泡沫炭层的形成,并显著提高材料的残炭量;当RDP的添加量为5%(质量分数)时,氧指数(LOI)达到最大值31,并通过UL94V-0级。可见RDP与APP/MC/PPO阻燃剂复配可大幅提高PE的抗燃烧性能。  相似文献   

19.
探讨了几种金属化合物对PP膨胀阻燃体系的影响,通过锥形量热仪分析了体系的阻燃性,SEM观察燃烧后材料的成炭情况。结果表明,ZB、ZEO、MgO能起到协效作用,成炭较好,而CuCl不但不能起到协效作用反而破坏了炭层的质量,呈对抗性。  相似文献   

20.
淀粉对聚乙烯膨胀阻燃体系热降解和阻燃的影响   总被引:2,自引:0,他引:2  
以淀粉作为膨胀阻燃体系中的成炭剂,取代或部分取代了膨胀型阻燃剂(IFR)中的季戊四醇(PER),研究了淀粉对膨胀阻燃剂及其与线性低密度聚乙烯(LLDPE)膨胀体系的热降解行为(TGA)和阻燃性.研究表明,聚磷酸铵(APP)可明显地改变淀粉的热降解行为促进成炭;尽管淀粉可提高IFR的成炭量和膨胀体系的膨胀倍数,但它却在一定程度上降低了LLDPE的膨胀体系的阻燃性,也即是降低了极限氧指数(LOI)和提高了热释放速率峰值(pk-HRR),而用淀粉部分取代PER,对其阻燃性很小,可用淀粉部分取代PER作为膨胀体系中的成炭剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号