首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
利用插层聚合合成了环氧丙烯酸酯/蒙脱土复合光固化树脂,并采用紫外光固化制备了环氧丙烯酸酯/蒙脱土纳米复合材料.用XRD、DSC对光固化过程中蒙脱土的插层和剥离行为进行了研究,并用FT-IR研究了蒙脱土对环氧-丙烯酸酯体系光固化速率的影响。力学试验证实,光固化后的环氧丙烯酸酯/蒙脱土纳米复合材料冲击与弯曲强度比原本体树脂分别提高了54%和10%.  相似文献   

2.
欧宝立  李笃信 《材料导报》2006,20(Z2):229-231
二氧化硅纳米粒子经表面修饰将丙烯酸酯键接到SiO2表面制备出丙烯酸酯修饰SiO2纳米粒子.丙烯酸酯修饰SiO2纳米粒子与聚丙烯(PP)熔融共混制备PP/SiO2纳米复合材料.研究了纳米粒子对复合材料力学性能的影响,并对纳米粒子增韧机理进行了研究.研究结果表明:复合材料冲击强度在SiO2含量为3.5 wt%时达到最大值,SiO2纳米粒子对聚丙烯基体材料有很好的增强增韧效果.  相似文献   

3.
革用聚氨酯/SiO2纳米复合材料的制备与物性研究   总被引:20,自引:1,他引:19  
采用溶胶-凝胶反应制备纳米SiO2颗粒,然后通过超声分散机将SiO2纳米颗粒分散到聚氨酯树脂中制备出聚氨酯/SiO2纳米复合材料。利用透射电子显微镜(TEM)、傅里叶红外分光光度计(FTIR)、万能电子试验机、动态力学分析仪(DMA)、量热示差扫描仪(DSC)分别表征了纳米复合树脂材料的结构和形态、力学性能和热稳定性。实验结果表明,纳米SiO2颗粒均匀分布在聚氨酯中,并与聚氨酯的基团发生了反应;聚氨酯/SiO2纳米复合材料具有较纯聚氨酯树脂更高的模量和内耗峰强度。拉伸强度和拉伸模量得到了很大的提高,并具有一个最佳值;而断裂伸长率有所下降,但随SiO2含量的进一步增加又有所提高;纳米SiO2掺杂对聚氨酯树脂的耐低温的性能影响不大,却提高了树脂的耐热性能,从而使聚氨酯树脂使用温度更宽。  相似文献   

4.
采用母粒法将改性后的粉体SiO2与HDPE树脂混合、制样,并对样品的力学性能及粉体在基体树脂中的分散情况等进行了测试.结果表明:纳米SiO2对HDPE有一定的增强增韧作用;填充纳米SiO2的改性PE强度和韧性高于纯PE;随着纳米SiO2含量的增大,复合材料的增强增韧效果越强.同时经过改性的SiO2在树脂中有很好的分散效果.  相似文献   

5.
电子显微镜对纳米SiO2/NR复合材料结构的分析   总被引:1,自引:0,他引:1  
控制制备工艺条件,利用Na2SiO3.9H2O与HCl在助剂作用下,先制备纳米SiO2乳液,然后再将其与天然胶乳共混共凝制备纳米SiO2/NR复合材料。采用SEM、TEM分析研究不同工艺条件下制备的纳米SiO2粒子的表面结构及粒径大小和纳米SiO2/NR复合材料的拉伸断面。结果表明,本方法制备的纳米SiO2粒子的粒径在25 nm~40 nm之间,其在NR基体中分散均匀,复合材料具有较好的综合力学性能。  相似文献   

6.
采用一种可以与氯乙烯(VC)发生共聚反应的可反应性纳米SiO2,通过原位悬浮聚合的方法制备了PVC/SiO2纳米复合材料。通过TGA、XPS分析,说明可反应性的纳米SiO2与PVC之间存在强烈的化学作用;考察了该纳米复合材料的微观形貌、力学性能,结果发现纳米SiO2在PVC基体中分散良好,含量为0.3%时,材料的拉伸强度、杨氏模量和断裂伸长率有最佳值,提出了纳米SiO2与PVC相互作用的机理。  相似文献   

7.
王娜  乔生儒  杨斌 《材料导报》2006,20(Z1):200-202,205
将改性后的纳米SiO2加入单体EG中超声波分散,然后与TPA搅拌混合置入反应釜中,制备PET/纳米SiO2复合材料.研究了纳米SiO2的用量及其分散形式.用傅立叶红外、SEM分析和观察纳米SiO2在复合材料中的结构和形态,用示差扫描量热法(DSC)分析PET复合材料的结晶行为.结果表明,PET/SiO2复合材料中的纳米氧化硅已经融入到PET基体中.将纳米SiO2在EG中直接用超声波分散,再与TPA聚合得到的复合材料中纳米SiO2粒子存在严重团聚现象;而纳米SiO2和分散剂PEG同时加入EG后用超声波分散,再进行聚合可以明显提高其分散性.DSC分析表明,PET/SiO2复合材料体系的结晶放热峰的宽度增大.当SiO2的量不超过2%时,能够略微提高PET的结晶温度,使结晶过冷度和结晶速率减小;当SiO2含量为3%时,结晶速率常数增大.与非等温结晶动力学分析得到的结果相同.  相似文献   

8.
为了增强、增刚、增韧齿科材料基体树脂,研究了SiO2、TiO2、Al2O3三种纳米粒子及含量对改性的环氧一甲基丙烯酸酯(EAM)树脂力学性能的影响。结果表明:不同纳米粒子及含量对EAM树脂性能影响不同,SiO2与TiO2增强增韧效果显著;SiO2含量为3%时,EAM树脂综合性能最佳。  相似文献   

9.
为研究玻璃纤维(GF)表面纳米SiO2改性对GF增强树脂基复合材料力学性能的影响,利用真空辅助模压(VAMP)工艺制备了不同含量的纳米SiO2表面改性GF增强聚环状对苯二甲酸丁二醇酯(PCBT)复合材料。分析了GF表面改性对GF/PCBT复合材料力学性能的影响,研究了纤维表面改性对GF/PCBT复合材料抗湿热老化性能的影响规律。纤维拔出试验结果表明:经表面处理的GF/PCBT复合材料的界面剪切强度提高了1.16倍;采用含量为0.5wt%和2wt%(与树脂质量比)的纳米SiO2处理GF表面后,复合材料的三点弯曲强度分别提高1.5倍和1.67倍,弯曲模量分别提高1.03倍和1.17倍。SEM结果显示:当纳米SiO2用量为2wt%时,破坏后的纤维表面被树脂完全覆盖,树脂与纤维粘结良好。在湿热条件下,由于纳米SiO2颗粒的存在,水分子很难通过界面相扩散到改性后的材料内部,其抗湿热性能提高。  相似文献   

10.
碳纤维/SiO2/聚苯并(噁)嗪复合材料的制备及性能研究   总被引:1,自引:0,他引:1  
以纳米SiO2/聚苯并(噁)嗪(PBOZ)为基体树脂,与碳纤维(CF)复合,制备了CF/SiO2/PBOZ复合材料,研究了纳米SiO2含量对其弯曲强度、层间剪切强度以及断面形貌的影响.结果表明,纳米SiO2含量为4%时,CF/SiO2/PBOZ复合材料的性能最好,材料的弯曲强度和层间剪切强度分别达到835和72.1MP...  相似文献   

11.
Polymer nanocomposites are increasingly used in applications that are subjected to harsh environments. Owing to polymer's susceptibility to photodegradation, nanofillers in a polymer nanocomposite may be released into the environments during the composite's life cycle. Such release potentially poses an environmental health and safety problem and may hinder commercialization of these advanced materials. This study investigated the fate and release of nanosilica from epoxy/nanosilica composites. Specially-designed holders containing nanocomposite specimens were irradiated with UV light in a well-controlled environmental chamber. UV irradiated samples were removed for measurements of polymer chemical degradation, mass loss, surface morphology, nanosilica accumulation on the composite surface, and nanosilica release. Epoxy matrix underwent rapid photodegradation, resulting in substantial accumulation of silica nanofillers on the composite surface and also release from the composite. A conceptual model for surface accumulation and release of nanosilica during UV irradiation of epoxy nanocomposites is presented.  相似文献   

12.
通过原位聚合和界面改性,制备出SiO2含量0phr~20phr(质量份数)的纳米SiO2/聚(癸二酸-丙三醇-柠檬酸)酯复合材料,并研究了其结构与性能。力学性能测试结果表明,改性纳米SiO2对弹性体表现出了优异的补强效果,拉伸强度可从0.9MPa提高到5.3MPa;扫描电镜(SEM)和透射电镜(TEM)表明,SiO2以纳米网络状态分散于基体中,与基体间界面结合良好;X射线衍射(XRD)谱图从分子短程相互作用的角度反映出SiO2的存在不利于有序结构的生成;差示扫描量热(DSC)曲线显示,随SiO2含量增加,材料的Tg向低温方向移动;降解性能测试表明,SiO2的加入有助于调节材料的降解速度。  相似文献   

13.
Nanocomposites of polybutylene terephthalate (PBT) and liquid crystalline polymer (LCP) with either polyphosphazene or nanosilica, or in combination of both were prepared by melt blending. The compatibility between the polymeric phases (PBT&LCP) was observed to be increased by the addition of polyphosphazene while the nanosilica promoted the LCP domain deformation from spherical to ellipsoidal shape. LCP fibres were produced in presence of both polyphosphazene and nanosilica due to the compatibilization of polyphosphazene and bridging effect of nanosilica through hydrogen bonding. All these above structural changes were confirmed by scanning electron microscope (SEM). Transmission electron microscope (TEM) images showed better dispersion of nanosilica in presence of polyphosphazene than nanosilica alone. There is remarkable increase in storage modulus with the addition of nanosilica, individually and in combination with polyphosphazene. Percentages of crystallinity for the concerned nanocomposites were calculated through X-ray diffraction study (XRD). Tensile strength and Young modulus were increased with addition of nanosilica and polyphosphazene but percentage of elongation at break was higher for polyphosphazene added nanocomposite. This is due to flexible compatibilizing effect of polyphosphazene, which delays the detachment of liquid crystalline polymer (LCP) domain from the polybutylene terephthalate (PBT) matrix and thus detains the fracture.  相似文献   

14.
The effect of nanosilica on compressive properties of an Epikote 828 epoxy at room temperature was studied. A 40 wt% nanosilica/epoxy masterbatch (nanopox F400) was used to prepare a series of epoxy based nanocomposites with 5–25 wt% nanosilica content. Static uniaxial compression tests were conducted on cubic and cylindrical specimens to study the compressive stress–strain response, failure mechanisms and damage characteristics of the pure and nanomodified epoxy. It was found that the compressive stiffness and strength were improved with increasing nanosilica content without significant reduction in failure strain. The presence of nanosilica improved ductility and promoted higher plastic hardening behaviour after yielding in comparison with the unmodified resin system. This result suggested that nanoparticles introduced additional mechanisms of energy absorption to enhance the compressive properties without reducing the deformation to failure.  相似文献   

15.
Structure of nanofillers and their subsequent interaction with a polymer is very important in determining thermal stability of polymer nanocomposite. In this paper, we tried to correlate structure of various 0, 1 and 2 dimensional nanofillers with the thermal stability of hydrogenated nitrile butadiene rubber (HNBR) nanocomposites. Organically modified and unmodified layered silicates such as montmorillonite (Cloisite Na+, Cloisite 30B and Cloisite 15A), rod-like fibrous filler (sepiolite) and spherical nanoparticles (nanosilica) were chosen for this purpose. A significant improvement in thermal stability (obtained by thermogravimeric analysis and differential scanning calorimetry) was observed for silica-filled nanocomposites. However, the activation energy of the nanocomposites calculated by different kinetic methods (both non-isothermal and isothermal methods) was found to be significantly high for sepiolite, 30B and silica-filled nanocomposites. The results were explained with the help of structure of the nanofillers, their interaction with the elastomer and the subsequent dispersion, as measured by X-ray diffraction, transmission electron microscopy and atomic force microscopy. From these analyses it was concluded that organically modified montmorillonite, sepiolite and nanosilica increase the thermal stability of the nanocomposite to a great extent due to the interaction of the reactive groups on the surface of these fillers with the polymer and high thermal stability of these inorganic fillers. Finally, degradation mechanism of HNBR in presence of the nanofillers at severe operating temperatures was investigated with the help of FTIR spectroscopy.  相似文献   

16.
The electrical and thermal properties of thin films of polyimide/silica nanocomposites prepared via sol–gel process were studied as a function of nanosilica particles content, temperature and applied field frequency. It was found that the dielectric constant and dielectric loss of the nanocomposites decrease with both the frequency and the nanosilica content, while increase with temperature. The AC-conductivity measured in frequency range 200?kHz–1.5?MHz decreases with the filler concentration and increases with increasing temperature. For the (25?wt%) nanocomposite, it was found that the AC-conductivity increases with temperature, and the Cole–Cole plots showed that the calculated activation energy and relaxation time decrease with temperature. The observed thermal conductivity increases gently with temperature. The empirical universal law was used to fit the observed electrical data under the measuring conditions.  相似文献   

17.
Thermal protection materials are necessary to protect structural components of launch vehicles during lift-off of launching system. The present study deals with the development of a novel thermally protected light rocket motor insulator compound (RMIC) of polyimide–silica filled EPDM nanocomposites. The insulation compound prepared for the studies comprised of aromatic polyimide and nanosilica particles. The addition of these materials in rocket insulator compound enhanced the multifunctional thermal and insulation characteristics. EPDM when grafted with maleic anhydride, contributed polarity in the non-polar EPDM matrix. Nanosilica contributes specifically better erosion resistance. SEM and TEM micrograph of EPDM nanocomposites exhibits good dispersion of nanosilica in polyimide–EPDM matrix. Nanocomposite formation was characterised by FTIR. Density, co-efficient of thermal expansion, thermal conductivity, ablation rate, specific heat, maximum thermal degradation, char yield and mechanical properties of the RMIC have been measured. This developmental study may find wide scope for commercial exploitation.  相似文献   

18.
A series of nanosilica (denoted as nano-SiO2) surface-capped with organic modifiers hexamethyldisilazane (denoted as HMDS; molecular formula: C6H19NSi2) and KH570 (molecular formula: C10H20O5Si) containing CC double bond were prepared by in situ surface-modification method. As-obtained nano-SiO2 particles were characterized by Fourier transform infrared spectrometry and transmission electron microscopy, and they were also used to reinforce silicone rubber (denoted as SR) in order to improve the mechanical properties. Moreover, a universal material testing machine was performed to determine the mechanical properties of the SR-matrix nanocomposites. Results showed that the surface properties of nano-SiO2 can be adjusted by changing the ratio of these modifiers. The tensile strength, tear strength and elongation at break of nano-SiO2/SR nanocomposites are comparable to or even better than those of R-106/SR nanocomposite (R-106 refers to commercially obtained fumed SiO2 nanoparticles that was modified with silane coupling agent). The mechanical strength of nano-SiO2/SR nanocomposites especially for tear strength largely improve with adding a small amount of CC content of the surface-capped nano-SiO2. More importantly, it could be feasible to manipulate the mechanical properties of silicone rubber by properly adjusting the dosages of surface-modifiers HMDS and KH570 during the preparation of in situ surface-capped nanosilica, which could be of special significance to developing high performance SR-matrix nanocomposites.  相似文献   

19.
在光固化水性聚氨酯乳液合成中原位引入纳米二氧化硅水溶胶制备复合乳液及复合膜,研究了二氧化硅粒径、表面化学特性对复合膜微观结构和性能的影响。透射电镜(TEM)和原子力显微镜(AFM)分析表明,表面有机改性二氧化硅很好分散在聚氨酯基体中,而酸性、碱性硅溶胶在聚氨酯基体中发生不同程度团聚和粘连,且不同粒径、表面化学特性的二氧化硅对纳米复合涂层表面形貌有较大影响;动态力学性能(DMA)分析表明,不同纳米二氧化硅引入对聚氨酯软硬段相分离产生较大影响,可不同程度提高复合膜的储能模量。  相似文献   

20.
In this study, the effect of silica nanoparticles as the reinforcing filler on the tensile response of basalt fibre reinforced polymer (BFRP) composite was investigated. A 40 wt.% nanosilica gel in epoxy was used to prepare a series of nanocomposites with 5 wt.%, 15 wt.% and 25 wt.% nanosilica. Static uniaxial tensile tests were conducted on the basalt fibre reinforced polymer composite to investigate the stress‐strain response of the unmodified and nanomodified composites. It was found that the incorporation of silica nanoparticles with high specific surface area improved the tensile properties of the basalt fibre reinforced polymer composite. The addition of silica nanoparticles in the composite shows significant improvement in tensile modulus with 6 %, 14 % and 19 % for 5 wt.%, 15 wt.% and 25 wt.% nanosilica content, respectively. The higher content of silica nanoparticles in the matrix increased the stiffness of the material as well as the strength of the basalt fibre reinforced polymer composite without reducing the failure strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号