首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
超级电容器电极材料的研究进展   总被引:1,自引:1,他引:1  
超级电容器作为一种新型、高效的储能元件,受到研究人员的广泛关注.主要综述了应用于超级电容器的活性碳、金属氧化物、导电聚合物复合材料等电极材料的研究进展以及现状,并探讨了电极材料的发展方向和研究重点.  相似文献   

2.
超级电容器有机导电聚合物电极材料的研究进展   总被引:1,自引:1,他引:0  
有机导电聚合物是一类重要的超级电容器电极材料.有机聚合物掺杂状态下,因具有共轭结构,从而提高了电子的离域性,对外表现可以导电.根据掺杂类型和组合的不同,超级电容器有机聚合物电极可分为3种基本类型.阐述了有机聚合物电极的导电原理和分类,介绍了有机聚合物电极的研究现状和发展趋势.  相似文献   

3.
导电聚苯胺电极材料在超级电容器中的应用及研究进展   总被引:5,自引:0,他引:5  
李晶  赖延清  李颉  刘业翔 《材料导报》2006,20(12):20-23,27
超级电容器用导电聚苯胺电极材料具有高比容量、化学稳定性好、价格低廉等优点,目前已成为超级电容器研究的一个新方向.简述了导电聚苯胺的制备与储能机理,从纯聚苯胺电极材料、¨离子掺杂聚苯胺电极材料、C/聚苯胺复合电极材料、聚苯胺混杂型电容器以及聚苯胺全固态超级电容器5个方面详细论述了导电聚苯胺电极材料在超级电容器中的具体应用,并对聚苯胺今后的发展方向给予了评论.  相似文献   

4.
介绍了碳材料、过渡金属氧化物材料、导电聚合物及复合材料的研究现状以及各类材料的储能机理和作为超级电容器材料的基本要求,提出了未来超级电容器材料的研究方向。  相似文献   

5.
周建新  沈湘黔 《功能材料》2004,35(Z1):1020-1023
超级电容器作为储能器件,与传统物理电容器相比较明显地提高了比容量和比能量,而与二次电池相比,虽然比能量低,但其比功率却有着数量级的增加.本文综述了用于制备超级电容器的三类电极材料碳材料、金属氧化物材料和导电聚合物材料的研究进展.  相似文献   

6.
超级电容器电极材料   总被引:5,自引:0,他引:5  
本文综述了碳基材料、金属氧化物及水合物材料和导电聚合物材料作为超级电容器电极材料的最新研究进展。  相似文献   

7.
超级电容器是一种具有优异电化学性能的新型储能装置,文章介绍了超级电容器的储能机理和优点,论述了碳基材料、金属氧化物材料及导电聚合物材料的研究进展和作为超级电容器电极材料的要求,对未来的电极材料的研究方向作出了展望。  相似文献   

8.
作为超级电容器的电极材料,导电聚合物具有成本低、容量高、快速充放电和安全性高等优点。聚噻吩是其中一类重要的聚合物。综述了近年来噻吩聚合物及其与无机材料复合的电极材料应用于超级电容器中的研究进展,并指出具有p型和n型掺杂的噻吩聚合物及其复合材料是聚合物超级电容器电极材料的发展方向。  相似文献   

9.
综述了多孔碳电极材料,金属氧化物、嵌锂化合物、导电聚合物等电化学活性电极材料,以及由这些材料制备的复合电极材料的研究进展。  相似文献   

10.
超级电容器电极材料的研究现状与展望   总被引:2,自引:2,他引:0  
超级电容器是一种介于传统电容器与电池之间的新型储能元件,具有广阔的应用前景和巨大的经济价值.电极材料是决定超级电容器性能的关键因素,因而备受关注.主要论述了目前应用于超级电容器的多孔炭材料、金属氧化物及导电聚合物等电极材料的研究进展,探讨了电极材料今后的发展方向和研究重点,并指出大力开发复合电极材料是改善超级电容器性能的有效途径.  相似文献   

11.
电化学超级电容器电极材料的研究进展   总被引:11,自引:0,他引:11  
电化学超级电容器以其独特的大容量、大电流快速充放电和高的循环使用寿命等特点,受到世人的青睐,致使许多新型的电化学超级电容器电极材料相继被发现和应用.为进一步促进电化学超级电容器的发展,在综述了近年来出现的各种电化学超级电容器电极材料的基础上,提出按材料种类将其分为四大系列:碳材料系列、过渡金属氧化物系列、有机导电聚合物系列和其他系列.并就其各自的特点和性能进行了分析比较,得出了碳材料系列主要向高比表面积和可控微孔孔径方向发展和过渡金属氧化物系列主要向提高材料本身的利用率方向发展以及导电聚合物系列主要向无机、有机杂化方向发展的结论.  相似文献   

12.
张苗苗  刘旭燕  钱炜 《材料导报》2018,32(3):378-383
聚吡咯是导电稳定性最好的导电聚合物之一。因其制备方式简单、环境友好、导电率高、电容性好及独特的掺杂性,制备聚吡咯复合材料以提高电极材料的稳定性成为超级电容器导电聚合物基电极材料的热点研究方向。综述了近年来聚吡咯电极材料及其与碳基材料、金属氧化物材料等二元、三元复合电极材料应用于超级电容器中的研究进展,介绍了聚吡咯的电荷储存机制、聚合机理、制备方法等,指出了当前超级电容器聚吡咯及其复合电极材料的热点研究领域,并且展望了其发展前景。  相似文献   

13.
目的综述导热高分子材料在包装印刷领域的应用及研究现状,拓展导热高分子材料的应用领域。方法首先介绍2类导热高分子材料的制备方法,即本征型和填充型导热高分子材料;其次全面综述用于包装印刷领域的导热膜/纸、导热胶黏剂和导热油墨;最后总结常用的各类导热机理模型。结果与本征型导热高分子相比,填充型导热高分子具有加工简单、成本低廉、应用面广等优点,是目前研究最多的导热高分子材料。导热膜/纸、导热胶黏剂和导热油墨具有广泛的研究基础,市场需求旺盛。导热预测模型虽能够有效预测复合材料的热导率,但会受到填料含量和粒子形貌的影响。结论导热高分子材料在包装印刷领域拥有巨大的应用需求,开展导热高分子的研究具有重要的现实和理论意义。  相似文献   

14.
赵贺  韩叶林  刘霞  卞希慧  郭玉高  管山 《材料导报》2016,30(Z2):328-334
导电高分子材料是一种同时具有金属般良好导电性和有机材料般柔韧加工性的新型材料,在防腐、能源、传感、光电领域等方面应用广泛。综述了当前导电高分子的最新情况,并重点介绍了导电高分子材料在金属防腐、超级电容器、传感器、隐身材料、电致变色、电致发光、自愈合等7个研究方向的最新动态,对其中每一种聚合物及其复合材料的制备方法和性能效果都做了叙述,最后介绍了导电高分子材料在多个领域的应用前景。导电高分子材料作为一门新兴学科正处于发展阶段,相信导电高分子材料理论和应用的研究将进一步推动导电高分子材料领域的深入发展。  相似文献   

15.
A breakthrough in technologies having “green” and sustainable energy storage conversion is urgent, and supercapacitors play a crucial role in this area of research. Owing to their unique porous structure, amorphous materials are considered one of the best active materials for high‐performance supercapacitors due to their high specific capacity, excellent cycling stability, and fast charging rate. This Review summarizes the synthesis of amorphous materials (transition metal oxides, carbon‐based materials, transition metal sulfides, phosphates, hydroxides, and their complexes) to highlight their electrochemical performance in supercapacitors.  相似文献   

16.
在各种能源储存设备中,锂离子电池成为重要的首选储能器件,在便携电子设备、电动车、混合电动车及其它能源存储设备等方面都有广泛应用。如何提高锂离子电池用电极材料的锂离子储存性能,已经成为材料科学与工程领域的热点之一。利用导电基质构建纳米结构复合材料是提高锂离子储存性能的有效途径。简要介绍了碳基和金属基质纳米复合电极材料的研究进展,主要包括材料制备新方法、新工艺、锂离子电池改性及其发展趋势等内容。  相似文献   

17.
金属氧化物电极材料兼有双电层电容和法拉第准电容,溶胶-凝胶技术制备金属氧化物电极材料可有效地提高比容量且制备的材料纯度高、工艺简单等,使超级电容器性能得到显著的提高,引起了许多研究者的广泛关注。综述了超级电容器的特征、应用范围,并详细地介绍了溶胶-凝胶技术制备金属氧化物电极材料的优点和存在的问题及研究进展情况,为促进新型储能电极材料的研究提供科学参考。  相似文献   

18.
导热绝缘材料对于元件散热、集成电路高性能化、节能环保具有重要作用。不同于填料型复合材料,本征型导热绝缘材料聚合物因其优良的电绝缘性、易加工性和良好的热导率而被广泛应用于工业领域。但大多数的综述都关注于填料型复合导热绝缘聚合物材料的发展上,对本征型导热绝缘聚合物材料的综述工作较少。因此,该工作针对于本征型导热绝缘聚合物材料的发展,总结了本征型导热绝缘聚合物材料的技术特点及研究进展,并对未来的发展方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号