首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fibre reinforcement is one of the effective ways of improving the properties of concrete. However, current studios on fibre -reinforced concrete (FRC) have focused mainly on reinforcements with steel and glass fibres. Thin paper reports on an experimental programme on the properties of various synthetic fibre reinforced cementitious composites and the properties of the reinforcing fibres. Acrylic, polyester, and aramid fibres were tested in uniaxial tension, both in their original state as we!! as after ageing in nerO*nL Samples of these fibres were found to lose varying amounts of strength with time, depending on the ageing temperature. Two different test methods were used to measure the fibre-cement interfacial bond strength. The tensile properties of concrete reinforced with acrylic, nylon, and aramid fibres, in the form of random distribution or unioxial alignment, were studied by means of three different tests: compact tension, flexural, and splitting tensile tests. The properties of concrete, particularly that of apparent ductility, were found to be greatly improved by the inclusion of such fibre reinforcement.  相似文献   

2.
Unidirectional (UD) carbon fibre reinforced polymers offer high specific strength and stiffness but they fail in a catastrophic manner with little warning. Gas-texturing and non-constrained annealing were used to introduce fibre waviness into UD polyamide 12 composites produced by wet-impregnation hoping to produce composites with a more gradual failure mode and increased failure strain. Both methods increased the variation of fibre alignment angle compared to the control samples. The composites containing wavy fibres exhibited a stepwise, gradual failure mode under strain controlled uniaxial tension rather than a catastrophic failure, observed in control samples. Gas-texturing damaged the fibres resulting in a decrease of the tensile strength and strain to failure, which resulted in composites with lower tensile strength and ultimate failure strain than the control composites. Non-constrained annealing of carbon fibre/PA-12 produced wavy fibre composites with ultimate failure strain of 2%, significantly higher than 1.6% of the control composite.  相似文献   

3.
Composites have set the standard for high strength materials for several decades. With the discovery of nanotubes, new possibilities for reinforced composites have arisen, with potential mechanical properties superior to those of currently available materials. This paper reports the properties of epoxy matrix reinforced with fibres of carbon nanotubes (CNTs) which, in many ways, are similar to standard composites reinforced with commercial fibres. The composites were formed by the back diffusion of the uncured epoxy into an array of aligned fibres of CNTs. The fibre density and volume fraction were measured from thermogravimetric analysis (TGA). Properties in tension and compression were measured, and the level of fibre–matrix interaction analysed fractographically. The results show the significant potential for this route to CNT reinforcement.  相似文献   

4.
Geopolymer matrix composites reinforced with different volume fractions of short carbon fibres (Cf/geopolymer composites) were prepared and the mechanical properties, fracture behaviour and microstructure of as-prepared composites were studied and correlated with fibre content. The results show that short carbon fibres have a great strengthening and toughening effect at low volume percentages of fibres (3·5 and 4·5 vol.%). With the increase of fibre content, the strengthening and toughening effect of short carbon fibres reduce, possibly due to fibre damage, formation of high shear stresses at intersect between fibres and strong interface cohesion of fibre/matrix under higher forming pressure. The property improvements are primarily based on the network structure of short carbon fibre preform and the predominant strengthening and toughening mechanisms are attributed to the apparent fibre bridging and pulling-out effect.  相似文献   

5.
The main aim of this paper is to develop kenaf-glass (KG) fibres reinforced unsaturated polyester hybrid composite on a source of green composite using sheet moulding compound process. Unsaturated polyester resin (UPE) and KG fibres in mat form were used at a ratio of 70:30 (by volume) with treated and untreated kenaf fibre. The kenaf fibre was treated with 6% sodium hydroxide (NaOH) diluted solution for 3 h using mercerization method. The hybrid composites were tested for flexural, tensile and Izod impact strength using ASTM D790-03, ASTM D618 and ASTM D256-04 standards respectively. The highest flexural, tensile and impact strength were obtained from treated kenaf with 15/15 v/v KG fibres reinforced UPE hybrid composite in this investigation.Scanning electron microscopy fractography showed fibre cracking, debonding and fibre pulled-out as the main fracture mode of composites and kenaf treated 15/15 v/v KG reinforced hybrid composite exhibited better interfacial bonding between the matrix and reinforcement compared to other combinations.  相似文献   

6.
Synchrotron microtomography is carried out for continuous C-fibre reinforced aluminium and a continuous C-reinforced polymer. The local volume fraction as well as the orientation distribution of the reinforcement are analysed three dimensionally for both composites using self-developed calculation methods. Representative elements for the analysis of the local volume fraction are determined by using two-point probability functions. The results show that regions with smaller volume fractions tend to form channels along the fibre bundles for both composites. Channels of high volume fractions, representing touching fibres (local volume fraction >55 vol%), are identified for the polymer matrix composite. The regions with high volume fraction >50 vol% tend to form clusters in the case of the metal matrix composite. The orientation of the reinforcement is followed throughout the volume of both composites. The results show preferential orientations within each bundle of the fibre reinforced metal. The orientation of the reinforcement is more homogeneous in the fibre reinforced polymer and the largest misorientations are found within the channels separating fibre bundles. The characterisation methods developed in this work can be used to evaluate quality criteria adopted in the stage of development of the composites.  相似文献   

7.
Hemp fibre reinforced unsaturated polyester composites (HFRUPE) were subjected to low velocity impact tests in order to study the effects of non-woven hemp fibre reinforcement on their impact properties. HFRUPE composites specimens containing 0, 0.06, 0.10, 0.15, 0.21 and 0.26 fibre volume fractions (Vf) were prepared and their impact response compared with samples containing an equivalent fibre volume fraction of chopped strand mat E-glass fibre reinforcement. Post-impact damage was assessed using scanning electron microscopy (SEM). A significant improvement in load bearing capability and impact energy absorption was found following the introduction hemp fibre as reinforcement. The results indicate a clear correlation between fibre volume fractions, stiffness of the composite laminate, impact load and total absorbed energy. Unreinforced unsaturated polyester control specimens exhibited brittle fracture behaviour with a lower peak load, lower impact energy and less time to fail than hemp reinforced unsaturated polyester composites. The impact test results show that the total energy absorbed by 0.21 fibre volume fraction (four layers) of hemp reinforced specimens is comparable to the energy absorbed by the equivalent fibre volume fraction of chopped strand mat E-glass fibre reinforced unsaturated polyester composite specimens.  相似文献   

8.
This study deals with the determination of uniaxial tensile strength of concretes reinforced withA-fibres (slag-basalt fibres) and glass-fibres at the age of 0,3 and 6 hours. For the determination of the tensile strength of fibre-reinforced concrete in its early age of setting and hardening a method was applied which was developped for the investigation of plain concretes. Tests were performed to obtain the relationships between the fibre volume fractions and uniaxial tensile strengths of concretes at different, ages. The kinetics of strength increase has been studied. It is shown that the kinetics of strength increase is to a high degree dependent on the kind of fibre reinforcement.  相似文献   

9.
Experiments carried out on pultruded fibre reinforced polyester resins show that, at moderate fibre volume fractions, the compressive strength of aligned fibre composites depends linearly on the volume fraction. The strength falls off when the fibre volume fraction,V f=0.4 with Kevlar and high strength carbon fibres. The effective fibre strength atV f<0.4 is much less than the tensile strength but it is close to the tensile strength with E-glass fibres and high modulus carbon fibres. Poor adhesion between fibres and matrix reduces the compressive strength, as does kinking the fibres when the fibre radius of curvature is reduced to below 5 mm. Misalignment of the fibres reduces the compressive strength when the average angle of misalignment exceeds about 10° for glass and carbon fibres. However, with Kevlar no such reduction is observed because the compression strength of Kevlar reinforced resin is only a very little better than that of the unreinforced resin.  相似文献   

10.
The properties of glass fibre reinforced cement composites (grc) containing alkali-resistant fibres of lengths 10 to 40 mm and volume fractions 2 to 8% have been studied. At 28 days the optimum properties of the composite were achieved with 6 vol % fibre addition. These were 4 to 5 times the bending strength, 3 to 4 times the tensile strength and 15 to 20 times the impact strength of the unreinforced cement paste. Further increase in the fibre content increases the porosity of the composite resulting in the lowering of bending and tensile strengths. The stress and strain of the composite at matrix cracking increased with increasing fibre contents. No significant improvements in the modulus of the composite were observed over the range of fibre additions investigated. The trends in the properties of grc as affected by the variations in volume fraction and length of the fibre, and environmental conditions of curing of the composites, are qualitatively related to the degree of cement hydration, changes in porosity of the composites and fibre/matrix interfacial effects. The properties of grc change with time, (strengths tend to decrease) and long term studies are in progress.  相似文献   

11.
Coir fibres were subjected to alkali treatment with a view to improving the wettability of coir fibres by a commercially available resin such as polyester. Tensile strength of the fibres increases by 15% when the fibres are soaked in 5% aqueous solution of NaOH at 28±1° C for 72 to 76 h after which it shows a gradual decrease. This decrease is much more pronounced when the alkali is replenished after every 24 h. SEM observations showed the removal of cuticle and tyloses from the surface of coir as a result of alkali treatment, resulting in a rough fibre surface with regularly spaced pits. The debonding stress of alkali-treated fibres from polyester matrix was 90% higher than that of untreated fibres from the same matrix. Untreated fibres tended to float in the polyester whereas alkali-treated fibres were uniformly dispersed in polyester. Incorporation of 0.30 volume fraction of untreated and treated fibres in polyester resulted in composites having 11% and less 5% porosity, respectively. Flexural strength, modulus and impact strength of composites containing alkali-treated fibres were 40% higher than those containing the same volume fractions of untreated fibres. Longitudinal ultrasonic velocity and sound attenuation measurements indicated less fibre segregation and better fibre-matrix bonding in composites containing alkali-treated fibres.  相似文献   

12.
Carbon fibres were pretreated by means of an interfacial in-situ polyamidation technique resulting in a polyamide coating of the fibres. The procedure followed involved successive application to the carbon fibres of two immiscible solutions of hexamethylenediamine and adipoyl chloride. Previous work conducted in our laboratory on chrysotile/epoxy composites coated with Nylon 6,6 provided interesting results when the tensile performance was evaluated. This behaviour was attributed to the improved affinity between matrix and asbestos fibres as a result of the well-known compatibility between polyamide and the epoxy phase. In this study emphasis is given to the coating of long carbon fibres such as are used for the preparation of unidirectional carbon/epoxy composites. The mechanical properties of uniaxial laminates with varying fibre volume fractions and polyamide contents are then compared with those of uncoated carbon fibres.  相似文献   

13.
A new type of composite was designed and tested which has greater fracture toughness under impact loading conditions than conventional fibre-reinforced composites. This composite is strain-rate sensitive and can be more than twice as tough as conventional composites having the same matrix and fibre. The key concept used was to coat the reinforcing fibres with a thin layer of viscous fluid in order to maximize the shear stress acting on the fibres during the fibre pull-out. At a given strain-rate the shear stress can be optimized by changing the fluid viscosity and thickness of the coating. The optimum results are obtained when the frictional force is equal to the fibre strength.Composites were made with uniaxial and randomly oriented E-glass fibres in a polyester resin. Samples with uncoated fibres were used as reference. The viscous fluids used included Dow Corning 200 Fluid with viscosities of 105 cP and 106 cP, Zelec U.N., petrolatum and silicone vacuum grease.Notched uniaxial samples with uncoated fibres (fibre volume fraction of 0.06) showed an energy absorption of 16.8 kJ m–2 (3.2 ft lb in.–1) in the lzod test. The uniaxial samples coated with Dow Corning 200 Fluid showed an energy absorption from 6.7 kJ m (1.28 ft lb in.–1) to 41.4 kJ m–2 (7.87 ft lb in.–1) depending on the thickness of the coating. The samples with random uncoating fibres (fibre volume fraction of 0.20) had an energy absorption of 14.2 kJ m–2 (2.71 ft lb in.–1) while the samples with coated fibres ranged from 13.7 to 31.6 kJ m–2 (2.60 to 6.02 ft lb in.–1).  相似文献   

14.
Thermoplastics reinforced by natural fibres are mainly used for fitting-up products in the automotive industry. The aim of this work is to study the tensile properties of natural fibre-biopolymer composites in order to determine whether or not, biocomposites may replace glass fibre reinforced unsaturated polyester resins. The materials used are flax fibre, polylactic acid (PLA), l-polylactide acid (PLLA), poly(3-hydroxylbutyrate) (PHB), polycaprolactone and starch thermoplastic (MaterBi® Z), poly(butylene succianate) (PBS) and poly(butylene adipate-co-terephtalate) (PBAT). The tensile properties of the flax fibres have already been determined [C. Baley, Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase, Comp Part A 2002;33:939–948]. The composites are manufactured using a film stacking technique. After studying the processing parameters, these are then adapted to each thermoplastic composites. Test samples are cut out from the composites to test their mechanical properties under tensile loading conditions. These tensile properties are then compared to those of similar polypropylene flax composites. Preliminary results show that the tensile properties are improved with the fibre volume fraction. The tensile strength and Young’s modulus of PLLA and PLA flax composites are greater than those of similar PP/flax fibre composites. The specific tensile strength and modulus of flax fibre/PLLA composite have proved to be very close to those of glass fibre polyester composites.  相似文献   

15.
In recent years, the use of flax fibres as reinforcement in composites has gained popularity due to an increasing requirement for developing sustainable materials. Flax fibres are cost-effective and offer specific mechanical properties comparable to those of glass fibres. Composites made of flax fibres with thermoplastic, thermoset, and biodegradable matrices have exhibited good mechanical properties. This review presents a summary of recent developments of flax fibre and its composites. Firstly, the fibre structure, mechanical properties, cost, the effect of various parameters (i.e. relative humidity, various physical/chemical treatments, gauge length, fibre diameter, fibre location in a stem, oleaginous, mechanical defects such as kink bands) on tensile properties of flax fibre have been reviewed. Secondly, the effect of fibre configuration (i.e. in forms of fabric, mat, yarn, roving and monofilament), manufacturing processes, fibre volume, and fibre/matrix interface parameters on the mechanical properties of flax fibre reinforced composites have been reviewed. Next, the studies of life cycle assessment and durability investigation of flax fibre reinforced composites have been reviewed.  相似文献   

16.
Resistance of fibre concrete slabs to low velocity projectile impact   总被引:1,自引:0,他引:1  
An investigation on fibre concrete slabs subjected to low velocity projectile impact was carried out to assess impact resistance. The main variables of the study were type of fibre and volume fraction of fibres. The types of fibres chosen were polyolefin, polyvinyl alcohol and steel. The volume fraction of fibres examined were 0%, 1% and 2%. A total of 10 square slabs of size 1 m and 50 mm thickness were cast and tested. Impact was achieved by dropping projectile of mass 43 kg from a height of 4 m, by means of an instrumented impact test facility. Test results indicate that hooked-end steel fibre concrete slabs have better cracking and energy absorption characteristics than slabs reinforced with other fibre types. Slabs reinforced with polyvinyl alcohol fibres exhibited higher fracture energy values compared to slabs reinforced with polyolefin fibres.  相似文献   

17.
The impact and flexural post-impact behaviour of ternary hybrid composites based on epoxy resin reinforced with different types of fibres, basalt (B), flax (F), hemp (H) and glass (G) in textile form, namely FHB, GHB and GFB, has been investigated. The reinforcement volume employed was in the order of 21–23% throughout. Laminates based exclusively on basalt, hemp and flax fibres were also fabricated for comparison. Hybrid laminates showed an intermediate performance between basalt fibre reinforced laminates on the high side, and flax and hemp fibre reinforced laminates on the low side. As for impact performance, GHB appears to be the worst performing hybrid laminate and FHB slightly overperforms GFB. In general, an increased rigidity can be attributed to all hybrids with respect to flax and hemp fibre composites. The morphological study of fracture by SEM indicated the variability of mode of fracture of flax and hemp fibre laminates and of the hybrid configuration (FHB) containing both of them. Acoustic emission monitoring during post-impact flexural tests confirmed the proneness to delamination of FHB hybrids, whilst they were able to better withstand impact damage than the other hybrids.  相似文献   

18.
The use of natural fibres instead of man made fibres, as reinforcements in thermoplastics, gives interesting alternatives for production of low cost and ecologically friendly composites. In this work different commercially available semi-finished natural fibre mat reinforced thermoplastics (NMT) composites have been studied. Mechanical properties and microstructure of different NMT composites were investigated and compared to conventional GMT (glass fibre mat reinforced thermoplastic) composites and pure polypropylene (PP). The study included also NMT composites manufacturing processing parameters as processing temperatures and pressure during compression moulding. The results showed that NMT composites have a high stiffness compared to pure polymer and the NMT with a high fibre content (50% by weight) showed even better stiffness than the GMT. The GMT composites had superior strength and impact properties compared to the NMT which might be due to the relatively low strength of the natural fibres but also to poor adhesion to the PP matrix. The NMT materials showed a large dependence on direction and are therefore believed to have more fibres oriented in one direction. The stronger direction (0°) of the NMT was in some cases as much as 45% better than the 90° direction.  相似文献   

19.
This experimental work is aimed at the characterization of new fibre reinforced composites based on epoxy resin with both protein (wool) and lignocellulosic (jute) natural fibres. Wool-based and hybrid (wool/jute) composites with two different stacking sequences (intercalated and sandwich) were developed. Their microstructure has been investigated through optical and scanning electron microscopy, whereas their quasi-static mechanical behaviour has been evaluated in tension and bending. In addition, the impact behaviour under low-velocity impact at three different impact energies, namely 6 J, 8 J and 9 J has been addressed. The tensile and flexural tests have been monitored using acoustic emission (AE) in order to elicit further information about failure mechanisms. AE monitoring showed that development of damage was due to nucleation of matrix microcracks and subsequent debonding and pull-out phenomena in wool fibre composites and that only in hybrid composites a sufficient stress transfer across the jute fibre/matrix interface was achieved. The results confirmed the positive role of hybridization with jute fibres in enhancing both the tensile and flexural behaviour of wool-based composites, though highlighting the need for an improved adhesion between wool fibres and epoxy matrix.  相似文献   

20.
The many aspects of high speed response of fibre reinforced composite materials have received the attention of a large number of investigators. Nevertheless, the understanding of the mechanisms governing failure under high speed loadings remain largely unknown. The effect of rate and fibre content on failure mechanisms was investigated by viewing fractured surfaces of tensile specimens using a scanning electron microscope (SEM). Tensile tests were conducted on a woven glass/epoxy laminate at increasing rates of strain. A second laminate (with random continuous glass reinforcement) was tested in tension at varying fibre volume fractions in order to ascertain the relationship between fibre content and failure mechanisms. The results suggest a brittle tensile failure in fibres of the woven laminate. In addition, the matrix was observed to play a greater role in the failure process as speed was increased, resulting in increased matrix damage and bunch fibre pull-out. The results also indicated that increasing the fibre volume fraction increased the likelihood of a matrix dominated failure mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号