首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
碳/环氧树脂复合材料应变率效应的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
选择两种铺设方式( SS)的T300/Epoxy(炭纤维/环氧树脂)层合板, 利用MTS试验机以及Hopkinson拉伸杆分别对其进行了准静态拉伸试验(应变率为10-5~10-4 s-1)、 中应变率拉伸试验(应变率为100 ~101s-1)和高速冲击拉伸试验(应变率为102~104s-1)。静态、 动态实验的试件形状及尺寸均相同。获得了不同应变率加载条件下T300/Epoxy的应力-应变曲线。基于所获得的应力-应变曲线, 讨论了应变率对炭纤维增强复合材料力学性能的影响。研究结果表明: 复合材料T300/Epoxy是应变率相关的材料; 层合板的铺设方向对其应变率效应有着显著的影响; 随着应变率的增加, 材料的强度及弹性模量有较大程度的提高, 但破坏应变有所降低。通过对试验结果的数据拟合, 提出了材料应变率相关的动态本构模型。   相似文献   

2.
以铺层顺序为[45/0/-45/00-45/90/0]s的新型碳纤维增强改性环氧树脂复合材料为研究对象,采用分离式Hopkinson(SHPB)压杆装置为加载手段,在高速冲击载荷条件下,对复合材料层合板在厚度方向和平面内纵向的动态压缩性能进行实验研究,分别得到在四种不同应变率下的应力一应变关系;并借助SEM对复合材料断口损伤形貌进行表征.结果表明:在高应变率条件下,层合板厚度方向的动态压缩强度及失效应变明显大于平面内加载方向;基体开裂、分层及剪切断裂是复合材料在动态压缩条件下的主要损伤及断裂模式.  相似文献   

3.
随着纤维增强复合材料的广泛应用, 研究其在湿热环境下的动态力学性能具有重要的理论研究意义与工程应用价值。首先对碳纤维增强环氧树脂基(Carbon/Epoxy)复合材料层合板试件进行了湿热处理, 其后采用分离式霍普金森压杆(SHPB)技术开展了干/湿态试件高应变率压缩实验并对实验结果进行分析。结果表明: 材料脱(吸)湿过程呈现出两段式特点, 存在二次脱(吸)水现象; Carbon/Epoxy复合材料层合板的强度在垂直铺层方向具有显著的应变率敏感性, 随着应变率从1 500 s-1增加至6 000 s-1, 其强度增加近3倍, 与此同时应变率对其弹性模量的影响却非常微弱; 此外, 湿热处理有助于提升该材料的动态力学性能, 经20 d吸湿后材料动态强度有最大12.45%的增幅, 吸湿使得材料动态强度的上升在应变率较低时比较明显。   相似文献   

4.
低速冲击作用下碳纤维复合材料铺层板的损伤分析   总被引:11,自引:4,他引:7       下载免费PDF全文
建立了一个有效计算模型, 以分析碳纤维复合材料层合板在低速冲击作用下的层内和层间失效行为。针对铺层板的层内损伤, 在基于应变描述的Hashin 失效准则的基础上, 建立了单层板的逐渐累积损伤分析模型;针对铺层板的脱层损伤, 建立了各向同性脱层损伤模型, 通过结合传统的应力失效准则和断裂力学中的能量释放率准则定义了界面损伤演化规律, 并在潜在产生脱层的区域模拟为粘结接触, 并将脱层损伤模型作为界面的接触行为。该计算模型通过商用有限元软件ABAQUS/ Explicit 的用户子程序实现。使用该计算模型对碳纤维增强环氧树脂复合材料层合板在横向低速冲击作用下的损伤和变形行为进行预测分析。数值仿真的结果与试验结果进行了比较, 取得了满意的结果, 验证了该模型的正确性。   相似文献   

5.
基于虚拟裂纹闭合技术的应变能释放率分析   总被引:3,自引:1,他引:2  
基于虚拟裂纹闭合技术(VCCT),建立了复合材料层合板层间裂纹尖端的应变能释放率(SERR)三维有限元计算模型。该模型考虑了裂纹尖端大转动和离散单元形状变化对应变能释放率计算的影响,修正了裂纹尖端应变能释放率的计算方法。利用该模型计算了裂纹长度为15 mm和35 mm时纯Ⅰ型和纯Ⅱ型的应变能释放率,纯Ⅰ型应变能释放率分别为 207 J/m2和 253 J/m2;纯Ⅱ型应变能释放率分别为 758 J / m 2和 1040 J / m2;计算值与试验值吻合得很好。同时,该模型计算了混合型不同比值 R=(G/G+G)的长裂纹层合板层间断裂过程的应变能释放率,其中Ⅰ型和Ⅱ型应变能释放率计算值与试验平均值的最大误差为 11.4%,最小误差为 0.4%。该模型能有效计算裂纹尖端的应变能释放率。  相似文献   

6.
基于伴随能量释放的渐进损伤演化思想,建立了复合材料层合板面内失效分析的连续介质损伤力学(CDM)分析模型,该模型包含损伤表征、损伤起始判定和损伤演化法则3个方面。基于CDM模型,通过引入损伤状态变量表征损伤,建立了平面应力状态下的材料损伤本构模型。采用损伤参量 fE改写Hashin准则,以判定损伤的起始。损伤演化由特征长度内的应变能释放密度控制,建立了损伤状态变量关于等效应变的渐进损伤演化法则。模型中还同时考虑了面内剪切非线性和网格敏感性,并进行了对比分析。对含缺口的[90/0/±45]3s和[(±θ4]s 2类典型复合材料层合板的面内拉伸失效进行了分析,结果表明,本文中的模型能有效预测复合材料层合板的面内拉伸强度。  相似文献   

7.
S-GF/Ep648复合材料层合板[09°/θ]s冲击抗力试验的结果表明其冲击抗力值与铺层角θ无关,只受浸水时间的影响;而另一种铺层形式[+θ8/-θ8]的复合材料层合板,在落重冲击试验中却发现:在相同的冲击能量下,θ越大,分层破坏越严重,损伤区面积也越大。利用SEM-505扫描电子显微镜对发生穿透性断裂、层间分层断裂或仅出现冲击损伤等破坏形式的断口表面进行了观察和分析,讨论了影响该复合材料冲击断裂和冲击损伤性能的因素。  相似文献   

8.
本工作对[±θ/902]S和[0n/902]S两系列碳/环氧层板在拉仲载荷下的横向裂缝与分层损伤,进行了实验研究和有限元分析.采用声发射技术跟踪配合显微观测多向层板损伤过程,分析了θ角变化与力学性能、初始损伤、累积等的关系.表明实测横向开裂与分层结果和采用能量判据有限元计算预测比较,符合良好.同时在扫描电镜内进行各类层板压缩试验,动态观测破坏形貌,讨论了不同θ铺层角的微观破坏机理.  相似文献   

9.
开展了单钉修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的试验研究。测试了三种不同能量冲击后碳纤维/环氧树脂复合材料层合板的压缩承载能力及失效模式,测定了单螺栓对碳纤维/环氧树脂复合材料层合板压缩承载能力的修复效率,并借助数字图像相关技术(DIC)表征手段揭示了单螺栓修复对含冲击损伤结构失效行为的影响。结果表明:冲击后碳纤维/环氧树脂复合材料层合板的压缩承载能力随着冲击能量的增加而降低,冲击损伤破坏了碳纤维/环氧树脂复合材料层合板结构的对称性,并导致结构在加载初期呈非对称的局部屈曲变形特征,局部屈曲诱发并加剧分层损伤扩展;单螺栓修复能有效恢复结构的整体对称性,在一定程度上抑制含冲击损伤碳纤维/环氧树脂复合材料层合板的局部屈曲,达到可观的修复效率。该研究为复合材料紧固件修理方案的制订及修理损伤容限的定义提供一定的指导意义。   相似文献   

10.
通过对圆形切口和长条形切口复合材料层合板试件进行拉伸实验,研究中心切口形状对层合板力学性能的影响。根据实验测得的应变分布规律确定切口引起的应变集中,并分析层合板的破坏过程。建立了基于连续刚度退化准则的渐进损伤模型,分析含切口试件的损伤扩展进程。结果表明,渐进损伤分析模型可准确描述含切口层合板的拉伸失效行为;长条形切口引起的应变集中系数较高,但切口附近的应变梯度更大;两种中心切口形式的复合材料层合板损伤进程有较大差异,但两者的拉伸强度较为接近。  相似文献   

11.
复合材料开孔层板压缩渐进损伤试验   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究碳纤维增强树脂基复合材料开孔层板在压缩加载过程中的损伤起始、演化方式和损伤特点,采用微距拍摄、逐级加载超声C扫描、X光扫描和扫描电子显微镜观测4种观测手段对国产CCF300/5228A[45/0/-45/90]4s、[452/02/-452/902]2s、[454/04/-454/904]s3种铺层方式的开孔层板进行了压缩试验研究。对压缩载荷作用下开孔层板的损伤起始和损伤演化进行了观察和对比。对试验中观测到的纤维微屈曲、纤维挤出、孔边开裂和分层扩展等现象之间的关系进行了分析和说明。试验结果表明:压缩载荷下45°和90°铺层相邻位置为层板易分层位置,含45°和90°铺层相邻位置的开孔层板渐进损伤过程较为明显:开孔层板在压缩载荷下较早出现损伤,损伤的起始和演化缓解了孔边应力集中,促使压缩应变能在孔边逐步释放,推迟开孔层板压缩破坏的发生,提高层板压缩承载能力。研究结果可为材料结构损伤容限设计提供依据。  相似文献   

12.
CALL混杂复合材料的弯曲试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
本文用高灵敏度云纹干涉法对CALL混杂复合材料在纤维方向和垂直于纤维方向的弯曲及破坏特性进行了实验研究,得到了弯曲试件横截面上的剪应变分布规律及破坏形式。实验结果表明:碳纤维/环氧树脂层的剪应变明显大于铝层的剪应变,但各自沿截面呈抛物线分布。纤维方向弯曲试件的破坏形式是分层或碳纤维/环氧树脂层剪切破坏;垂直于纤维方向弯曲试件的破坏由受拉面碳纤维/环氧树脂层的拉伸破坏所致。本文工作为进一步深入研究CALL材料的力学性能提供了重要的实验依据。  相似文献   

13.
采用真空辅助成型工艺制备单向玻璃纤维增强环氧树脂基的[±45°]8s复合材料试样,通过专用试验设备开展恒定应变率下的面内剪切性能研究,应变率范围为3×10-4~128.4 s-1。以Khan-Huang本构关系模型表达形式为基础,考虑应变率效应,建立了一种单向玻璃纤维增强环氧树脂基复合材料在中等应变率下的剪切本构模型,通过最小二乘法和遗传算法获得了最优本构参数。结果表明,单向玻璃纤维增强环氧树脂基复合材料的剪切性能具有应变率敏感性,剪切强度随着应变率的提高逐渐增大,在128.4s-1时极限强度提高了35.5%。建立的本构关系模型能够准确反映剪切性能与应变率的关系,可用于中等应变率条件下的剪切性能预测。  相似文献   

14.
为了充分了解热隔膜成型过程中预浸料的变形行为,通过偏轴拉伸测试探索了热固性单向碳纤维/环氧树脂预浸料在高温条件下的面内变形机制。研究参数包括试验温度、拉伸速率、预热时间和铺层顺序等。利用数字图像相关技术,在测试过程中监测单向碳纤维/环氧树脂预浸料的变形和纤维的旋转情况。结果表明,提高试验温度或降低拉伸速率均有利于促进单向碳纤维/环氧树脂预浸料的变形。铺层顺序对单向碳纤维/环氧树脂预浸料铺层的变形行为有很大影响,[45/–45/90]S铺层方式比 [45/90/–45]S铺层方式更有利于纤维旋转,且[45/–45/90]S铺层方式变形阻力更小。采用铰链连接网(Pin-joined net, PJN) 理论对单向碳纤维/环氧树脂预浸料铺层变形过程中纤维角度变化进行预测并与实验结果进行对比,结果表明,用PJN理论预测的纤维旋转角度值与测试值存在较大偏差,说明其并不适用于预测热固性单向碳纤维/环氧树脂预浸料变形过程中纤维角的变化。同时,80℃预加热可以提高单向碳纤维/环氧树脂预浸料的变形阻力。   相似文献   

15.
对不同铺层角度的碳纤维/环氧树脂形状记忆复合材料(SMC)层合板的弯曲回复性能进行了研究。结果表明,[±θ]_s铺层方式的SMC层合板的形状回复率、回复力均随着铺层角度增大而减小,回复时间随着铺层角度增大而增大,其中铺层角度增大至45°后,回复时间开始出现大幅的增加,铺层角度增大至60°后,回复率开始出现大幅的降低。对SMC层合板进行了15次的赋形-回复循环过程,发现不同铺层角度SMC层合板均能保持较稳定的形状记忆回复率和回复时间。但在铺层角度0~30°的范围内,层合板的形状回复力随着铺层角度增大而减小。最后分析了不同铺层角度SMC层合板的局部损伤,结果表明,[0]_4和[±15]_s铺层方式的SMC层合板基体已达到了其极限剪切应变,基体发生严重破坏,并且会随着赋形次数的增加而加剧。  相似文献   

16.
使用分离式Hopkinson压杆(SHPB)系统,在温度293~973 K、应变率6 000~10 000 s-1下,对原位合成TiC颗粒和TiB晶须混合增强钛基复合材料(TMCs)的动态压缩性能进行了研究。试验结果表明:在373~573 K、673~773 K和873~973 K范围内TMCs流变应力随温度的增加而显著减小;在较低温度(低于373 K)和较低应变率(6 000~8 000 s-1)下,TMCs呈现小幅的应变率硬化特征,而在较高温度(573 K及以上)时各应变率下TMCs均存在应变率软化特征,且温度越高材料应变率软化效应越明显。材料失效/断裂机制分析表明:应变率软化机制主要是绝热软化及其产生的绝热剪切带(ABS)中微裂纹的形成和扩展的综合作用;在较高的应变率和较大应变下ABS中会产生微裂纹,温度较低时TMCs塑性不足以抑制或阻碍微裂纹的扩展,从而导致TMCs在宏观上迅速破坏;材料破坏时以钛合金基体塑性断裂为主,但在局部伴随部分增强相脆性断裂。   相似文献   

17.
本文对碳纤维增强复合材料O°、±45°和0°/90°铺层的无缺口、有直边缺口、有中心圆孔和有中心缺口层板,作了静态拉伸试验研究。采用超声波扫描成象检测方法,检测了碳/环氧复合材料在不同加载区域内的损伤分布及损伤程度,得到了载荷—损伤程度曲线和材料内部缺陷分布的分层图象。结果表明:带有垂直于载荷方向直边缺口的试件在受静态拉伸时,裂缝不是沿缺口长度方向作自相似扩展,而是沿纤维方向的界面扩展,缺口基本上不影响试件无缺口部分的承载能力;对于带中心缺口的试件,首先出现缺口尖端的界面分离;带中心圆孔的试件,损伤从孔周开始,逐渐沿纤维方向扩展。本文还分析了试件的损伤和破坏机理。  相似文献   

18.
对比分析DP980高强钢在应变速率10~(-3)~10~3s~(-1)范围内的动态拉伸实验结果,研究其力学行为以及断裂模式特点。结果表明:应变速率从准静态(10~(-3)s~(-1))增加至10~0s~(-1)过程中,强度基本保持不变,塑性下降了7.5%;应变速率从100s~(-1)增加至103s~(-1)过程中,强度不断增大,而塑性在10~0~10~2s~(-1)范围内上升14%,随后在10~2~103s~(-1)范围内下降了24.7%;应变速率敏感系数m始终随应变速率的增加而升高。变形过程中,位错增殖强化和加速阻力是强度上升的主要原因。塑性变形集中在铁素体中,微孔裂纹主要沿马氏体/铁素体交界扩展。试样沿厚度方向上的宏观断口,在应变速率小于101s~(-1)时呈"V"形杯锥状,在应变速率高于10~1s~(-1)时则是与拉伸方向成约45°的纯剪切型。  相似文献   

19.
针对某飞机上应用的典型铺层[(±45)4/(0,90)/(±45)2]S和[(±45)/(0,90)2/(±45)]S,研究了孔隙对碳纤维增强环氧树脂基复合材料层合板的吸湿行为和层间剪切强度的影响。采用不同的热压罐固化压力制备了不同孔隙率的试样。采用显微图像分析技术对孔隙率和孔隙的微观结构特征进行了详细的分析。研究结果表明:孔隙主要分布于层间,且随着孔隙率的增大,孔隙的尺寸增大;2种层合板的吸湿率和最大吸湿量随着孔隙率的增加而增加;湿热老化和未经湿热老化的层间剪切强度都随着孔隙率的增加而下降。铺层[(±45)4/(0,90)/(±45)2]S未经湿热和湿热后的层间剪切强度随着孔隙率增加分别下降6%(孔隙率:0.6%~6.3%)和9%(孔隙率:0.4%~7.0%);铺层[(±45)/(0,90)2/(±45)]S未经湿热和湿热后的层间剪切强度随着孔隙率增加分别下降14%(孔隙率:0.4%~6.9%)和7%(孔隙率:0.2%~8.9%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号