首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
研究了进水pH值、原水回收率、膜前压力、进水盐浓度、进水水温、进水余氯浓度等运行条件对家用净水机中反渗透膜性能的影响.家用净水机适宜的运行条件为:pH值在6~8,原水回收率为15%~50%,膜前压力维持在0.4~0.6 MPa,进水温度保持在15~30℃.  相似文献   

2.
对一台大冷量整体式斯特林制冷机开展了冷却水温影响的研究。充气压力1.85 MPa时,冷却水进水温度每升高5℃,77 K制冷量实验值减小约40 W,COP实验值降低约0.4%。77 K制冷温度下,压缩腔工质平均压力、制冷机输入功和水冷器换热量随冷却水温升高而增大。提高充气压力,发现冷却水温度变化对制冷性能的影响几乎不变。  相似文献   

3.
EDI膜堆的调试运行   总被引:1,自引:0,他引:1  
通过电去离子(EDI)装置的试验和多次的现场调试,根据影响EDI运行的主要因素:进水电导率、进水流量(包括淡水流量、极水流量、浓水流量)、运行电压、运行电流、水的pH、温度、压力(包括入水、产水、极水、浓水的压力),总结出现场调节较多的参数是进水流量、极水流量、浓水流量、运行电压和运行电流、运行压力,并且提出了上述参数的调节方法、调节范围和调节时的注意事项.  相似文献   

4.
分析冷水机组变冷冻水流量和变冷却水流量运行对机组性能的影响,结果表明:恒定冷水机组冷冻水出水温度和冷却水出水温度时,改变冷冻水/冷却水流量,冷水机组的性能系数变化不大;恒定冷水机组冷冻水进水温度和冷却水进水温度时,改变冷冻水/冷却水流量,冷水机组的性能系数随水流量的增加而增大,且增加的幅度较大.  相似文献   

5.
PVDF疏水中空纤维膜与组件对真空膜蒸馏性能的影响   总被引:4,自引:0,他引:4  
利用高孔隙率的聚偏氟乙烯(PVDF)中空纤维疏水膜进行真空膜蒸馏(VMD)脱盐实验.在真空度0.095MPa,盐水温度60℃,流速1.5kg/min的条件下,着重研究了中空纤维膜内径、壁厚,组件长度、装填纤维数目等结构参数对VMD性能的影响.结果表明:组件长度或装填纤维数目增加,组件产水通量明显降低而总产水通量明显提高;中空纤维膜内径对VMD产水通量影响较小,而膜壁厚增加使通量明显降低;用内径1.0mm壁厚0.1mm的膜制成的长度21cm装填纤维50根的膜组件,产水通量达到21.8kg/(m2·h).VMD过程产水的电导率保持在4μS/cm以内,脱盐率达99.99%,受膜、组件结构及操作条件影响很小.  相似文献   

6.
采用错流纳滤工艺开展了饮用水中苯系污染物的去除效能和纳滤运行特性的研究,考察了纳滤膜对苯、乙苯、邻二甲苯和间二甲苯的截留效果,研究了操作压力、浓水流量、离子浓度、进水温度和苯系污染物浓度等因素的影响.结果表明,随着操作压力和进水温度的升高,膜通量呈增加趋势;随浓水流量和离子浓度的升高,膜通量呈降低趋势;随着回收率、操作压力、离子浓度和进水温度的增加,纳滤膜的截留率均降低;随浓水流量和苯系污染物浓度的增加,纳滤膜的截留率升高.在所有试验条件下,纳滤膜对4种苯系污染物的截留率都介于86.56%~98.85%之间,出水中乙苯、邻二甲苯和间二甲苯含量均符合《生活饮用水卫生标准》(GB5749—2006);进水苯含量低于0.1mg/L时,出水苯含量能满足国标要求.通过研究投资和运行成本,确定出经济运行参数为回收率90%、操作压力0.6 MPa和浓水流量30L/min.  相似文献   

7.
采用实验室配制的10 g/L的KCl模拟废水,对各种膜组合工艺脱盐效果进行比较.研究结果表明,纳滤强化的"双膜"工艺能显著提高系统清水回收率,减少后续浓水排放量,是值得推荐的含盐废水处理膜组合工艺之一.采用纳滤强化的"双膜"工艺对神华煤制油自备电厂循环冷却水进行处理,在进水温度约为13.5℃,运行压力约1.0 MPa条件下,系统脱盐率和回收率分别为95.8%和64.1%.随着进水温度从7.8℃上升至22.0℃,系统脱盐率从95.89%逐渐降低至95.46%,而系统回收率从61.11%逐渐增大至68.12%.当运行压力在0.88~1.03 MPa之间变化时,系统脱盐率和回收率随着运行压力的增大而迅速提高;当运行压力大于1.03 MPa时,脱盐率和回收率随进水压力增长变化减缓.  相似文献   

8.
在背压0.4MPa~4.1MPa的条件下进行气泡雾化试验,研究了气泡雾化的雾化角在喷射速度20m/s~27m/s、气液质量比(GLR)4%~10%、背压0.4MPa~4.1MPa范围内的变化规律。试验结果显示:喷射速度和GLR的增大都能使得雾化角增大,背压不同时也一样。在背压较低时,随着背压的增大雾化角变小,而当背压增加到一定程度以后出现拐点,随着背压的增大雾化角也增大,拐点大概是在1.1MPa左右。  相似文献   

9.
在自行搭建的喷射器性能测试实验台上,以CO_2、N_2及R290为工质,通过改变喷射器喷嘴临界截面直径,总结喷射器喷射系数在不同的引射流体入口压力、工作流体入口压力及工质种类条件下的变化规律。实验设定工作流体温度为90℃,喷射器背压为3. 9 MPa,工作流体入口压力变化范围为8. 0—10. 0 MPa,引射流体入口压力变化范围为2. 4—2. 9 MPa,喷嘴临界截面直径变化范围为0. 68—0. 72 mm。实验结果表明:当保持喷射器的基本工作参数不变,引射流体入口压力为一定值时,喷射器喷射系数随喷嘴临界截面直径的减小而逐渐增大;当保持喷射器的基本工作参数不变,工作流体入口压力为一定值时,喷射器喷射系数随喷嘴临界截面直径的增大而逐渐减小;在相同工作压力下,喷射系数大小依次是N_2、CO_2、R290;在相同引射压力下,N_2、CO_2先达到稳定状态;在保持喷射器的基本工作参数不变时,工作流体入口压力及引射流体入口压力的提高对喷射器喷射系数均有提升作用。  相似文献   

10.
利用自制的具有高效内部热量回收功能的多效膜蒸馏组件对不同浓度的氯化钠水溶液进行浓缩研究.考察进料温度、浓度、流速对膜通量、造水比和脱盐率的影响.实验结果表明,料液加热温度T3升高时膜通量和造水比随之明显增加,而脱盐率保持不变;料液流速增加使膜通量增加,而造水比随之降低,脱盐率几乎不受影响;随着料液浓度的增加,膜的通量和造水比逐渐降低,脱盐率略微减小但影响很小.当料液中氯化钠浓度较低时,该过程的最大膜通量为6.8L/(m2·h),造水比为12.5;当料液中氯化钠浓度大于15%时,膜通量为5.2 L/(m2·h),造水比为6.2,脱盐率可达99.99%.实验结果表明,多效膜蒸馏技术可有效应用于海水淡化及常规海水淡化过程,例如反渗透和多效蒸发过程所副产浓盐水的深度浓缩和淡水生产.  相似文献   

11.
为研究冷冻水流量与温度变化对基于大滑移温度非共沸工质双温冷水机组性能的影响规律,本文在大滑移温度非共沸工质的双温冷水机组实验台进行了多组实验研究。实验分别研究了非共沸工质R32/R236fa在不同质量组分比例(0.4∶0.6,0.5∶0.5,0.6∶0.4)下,冷冻水流量由0.25 m~3/h增大到0.45 m~3/h,以及高温冷冻水温度变化时,冷水机组性能的变化情况。实验结果表明,在冷却水进出口温度为32℃与37℃,高、低温冷冻水温度分别为7℃,16℃时,不同冷冻水流量下冷水机组的制冷效率(COP)最大为4.17,最小COP为3.27。此外,高温冷冻水温度变化对冷水机组COP存在明显影响。实验为大滑移温度的双温冷水机组的应用提出了数据基础。  相似文献   

12.
《真空》2019,(5)
建立了由喷射器、蒸发器、发生器和冷凝器等组成的蒸汽喷射制冷循环系统。研究了不同的扩压器等直段直径对喷射器抽气性能的影响。当扩压器等直段直径由24mm增加到28mm后,喷射器的引射系数显著增加,喷射器的抽气效率得到了提高,但临界背压降低。分析和讨论了在不同操作参数下扩压器等直段直径对喷射器性能的影响。结果表明,随着工作蒸汽压力的升高,引射系数呈现先升高后下降的变化趋势,在达到0.36MPa时喷射器的引射系数值最大为0.53。当背压值小于临界背压值时喷射器的引射系数保持不变,当背压值大于临界背压值时引射系数减小直至背压为7000Pa时引射系数为0。在一定的操作参数条件下,扩压器等直段直径存在最佳值使喷射器的抽气效率达到最高。  相似文献   

13.
实验选取两种国产纳滤膜NF2A和NF3A进行纳滤膜淡化高氟苦咸水的基础研究,考察操作压力、温度、进水pH、进水氟浓度、总含盐量(TDS)及运行时间对纳滤膜分离性能的影响,并测定膜的Zeta电位,同时简单比较两种膜.研究结果表明,两种纳滤膜处理高氟苦咸水的理想操作条件为:压力1.0~1.5 MPa,温度20℃,进水pH=6.5左右,在此条件下NF3A纳滤膜的脱盐率为79%,脱氟率为90%,产水通量为53 L/(m2·h),NF2A纳滤膜的脱盐率分别为73%,73%和71L/(m2·h),此外,随进水氟浓度和总含盐量的增大,纳滤膜的脱氟和脱盐率降低,同时得出两种膜在长期运行72 h内膜性能基本保持稳定,最后测得NF3A和NF2A的Zeta电位分别为-22和-18 mV.这项研究为国产纳滤膜处理高氟苦咸水的实际应用提供了技术数据,有利于国产纳滤膜的发展和完善.  相似文献   

14.
PVDF疏水中空纤维膜的膜蒸馏含盐废水处理性能研究   总被引:5,自引:0,他引:5  
利用新型高通量聚偏氟乙烯(PVDF)中空纤维疏水膜,对石化企业废水经反渗透(RO)处理的浓排水进行减压膜蒸馏(VMD)处理实验.研究了RO浓排水流速、温度和冷侧真空度对VMD过程中PVDF膜性能的影响,考察了PVDF膜在VMD法RO浓水浓缩过程中的性能变化.结果表明,原液流速对膜性能无明显影响;原液温度或冷侧真空度提高都会使膜的产水通量明显上升,而产水电导保持稳定.在冷侧真空度为-0.095MPa、原液温度70℃、流速0.66m/s的条件下,经15.2h实验,将RO浓排水浓缩20倍,膜的产水通量从25.8L/(m2*h)降低至11.8L/(m2*h),产水电导低于4霺/cm,脱盐率高于99.99%,产水CODCr值约30mg/L.经过5次浓缩实验后,PVDF膜的通量和产水电导均保持稳定.  相似文献   

15.
黄河流域中游煤矿区浅层含水层地下水为当地生活饮用水的主要来源,应用感官指数和健康指数对水质进行定量评价,发现部分浅层地下水存在硝酸氮超标风险.采用纳滤浓水与反渗透产水混合工艺,考察了纳滤膜类型、膜系统、压力和回收率对产水水质的影响,对比了不同回收率下纳滤产水水质的理论预测值及实测值,开展了混合脱盐工艺与传统的反渗透产水与超滤产水勾兑工艺的技术适用性及经济性分析.结果表明,纳滤系统运行压力与硝酸氮透过率负相关.最佳运行条件是采用NTF40纳滤膜、运行压力为0.4 MPa且回收率为60%,纳滤浓水与反渗透产水的混合水离子浓度适中,且阴/阳离子比重明显改善,硝酸氮质量浓度相比原水下降56.1%,与预测产水水质偏差小于10%.混合脱盐方案综合回收率高达94%,相比传统反渗透与超滤产水勾兑方案具有潜在的技术优势和经济效益.  相似文献   

16.
中部某垃圾焚烧电厂渗滤液深度处理系统水回收率为55%,采用STRO膜工艺对原系统常规反渗透浓水进行减量化中试.中试结果表明,在5.5 MPa和7.0 MPa的运行压力情况下,原系统的水回收率分别提升至80%和89%.系统电导率去除率大于97%,CODCr去除率大于99%,氨氮去除率大于90%.系统在5.5 MPa压力下连续稳定运行40天,通过HCl和NaOH常规CIP化学清洗后,STRO膜运行通量恢复性好.STRO系统产水与原常规反渗透产水混合后可作为垃圾焚烧发电厂锅炉补给水处理系统进水使用,减量后的浓水回喷至炉内焚烧.采用STRO膜深度处理常规垃圾渗滤液处理系统浓水,具有处理效果好、系统运行及产水水质稳定等特点,是垃圾渗滤液减量化的新途径.  相似文献   

17.
通过试验观察与分析,发现膜空分制氮过程的稳定性除受进气压力和进气温度的主要影响之外,还受膜的工作背压的影响,不过背压只有达到一定值时,才表现出其影响.另外工作过程的压力突然变化会导致产氮纯度的急剧变化,并对这种系统的设计提出一些建议.  相似文献   

18.
一、临界流文丘里喷嘴的最大允许背压比与临界压力比设临界流喷嘴的进口压力为p1、滞止压力为p0、喉部压力为p*、出口压力为p2。增大临界流喷嘴的滞止压力p0或减小临界流喷嘴的出口压力p2,即减小背压比(p2/p0),则流过临界流喷嘴的气体流量增加。当背压比减小到使临界流喷嘴达到临界压力比(p*/p0)c时,气体的流量达到最大,此时的背压比即为最大允许背压比,气体流速为当地声速。再继续降低背压比(p2/p0),流过临界流喷嘴的气体流速将保持不变。  相似文献   

19.
超滤膜法浓缩薏苡仁多糖提取液   总被引:1,自引:0,他引:1  
研究了薏苡仁多糖的超滤膜法提取液浓缩和除小分子杂质过程,并对膜工艺过程的浓差极化及膜污染展开分析,在此基础上对膜清洗进行了尝试,得到适合的膜清洗工艺.在四种陶瓷超滤膜中,截留分子量为150 kDa的超滤膜最适合于薏苡仁多糖提取液浓缩;当压力在0.13~0.21 MPa,温度在20~60℃时,压力和温度的提高均有利于超滤膜通量的增大,但也会加剧膜通量的下降;在超滤过程中,膜污染阻力随着时间的延长而不断增大,而浓差极化效应则不断减小;采用热水,碱洗和次氯酸钠清洗后,膜水通量能够恢复到实验前的水平.  相似文献   

20.
本文采用自制的陶瓷超滤膜分离右旋糖酐,研究了操作参数如压力、温度、膜面流速和料液浓度等对陶瓷超滤膜分离右旋糖酐的影响,并对操作参数进行了优化.所用陶瓷超滤膜材料为氧化锆,切割分子量约为2 700,纯水渗透率约为375L/(m~2·h·MPa).研究表明,增大操作压力,膜通量以及右旋糖酐的截留率均有所增加.当操作压力增加至0.3 MPa时,右旋糖酐与果糖的分离因子最大,二者的分离效果最好.温度变化时,膜通量随温度的升高而升高,但右旋糖酐的截留率随温度的上升而下降.适当增大膜面流速有利于增大膜通量和右旋糖酐的截留率.此外,还考察了陶瓷超滤膜在右旋糖酐分离纯化过程中的稳定性.当料液浓度为60g/L时,陶瓷膜在连续12h的运行过程中,膜通量稳定在24L/(m~2·h)左右,分离因子稳定在11.5以上.陶瓷超滤膜在右旋糖酐分离方面展现了良好的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号