首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
膜接触器吸收二氧化碳过程中的膜润湿研究   总被引:1,自引:0,他引:1  
自制疏水性聚偏氟乙烯(PVDF)中空纤维膜膜组件,采用二乙醇胺(DEA)溶液为吸收液进行二氧化碳吸收实验,研究了在膜接触器中的微孔膜润湿随操作时间的变化,以及吸收液浓度和温度对膜润湿的影响.实验结果表明,随着吸收过程的进行,膜润湿百分率逐渐增加;膜润湿随着DEA溶液浓度的增大而下降;升高温度促进了微孔膜的润湿.利用微孔膜渗入机理、Fick定律和膜孔径对数分布函数,我们提出了膜吸收过程中膜润湿百分率随时间变化的理论方程,并且对实验数据进行了拟合,得到了较好的拟合效果;同时理论上分析了膜润湿对总传质系数的影响.  相似文献   

2.
聚四氟乙烯(PTFE)是一种强疏水的氟碳材料,很难用相转化成膜。本文将PTFE粉体分散在聚偏氟乙烯(PVDF)溶液中得到PTFE悬浮液,首先用干湿相转化法制得PTFE/PVDF中空纤维膜胚;然后在氮气气氛下进行部分碳化,制得部分碳化PTFE/PVDF中空纤维膜.用热重分析法、X射线光电子能谱(XPS)和扫描电镜研究了PTFE/PVDF中空纤维膜胚的碳化工艺、膜碳化前后表面元素和微观结构变化情况;最后测试了膜的亲疏水变化和油水分离性能.结果表明:PTFE/PVDF中空纤维膜胚中的PVDF在360~450℃时发生C-H断裂,PTFE保持原结构,可以得到部分碳化PTFE/PVDF中空纤维膜.经部分碳化工艺制得的中空纤维膜孔径减小,形成连续、完整的微孔结构.当PTFE含量为40%时,碳化后制得的膜接触角达到102°,疏水性提高;对10%的模拟含油废水的渗透通量达到30 L/(m2·h)(跨膜压差:0.1 MPa)、分离效率达到80%,呈现出较好的油水分离性能和商业应用价值.  相似文献   

3.
对聚偏氟乙烯(PVDF)/碳酸二苯酯(DPC)体系,采用热致相分离(TIPS)法制备了PVDF微孔膜.通过稀释剂的溶度参数对体系的相容性进行分析,热力学相图和不同PVDF质量浓度下制备的微孔膜断面照片均证明该体系具有较宽的液-液相分离区.PVDF/DPC体系偏晶点对应的PVDF浓度约为质量分数56%,低于此浓度体系降温后先发生液-液相分离,随着PVDF浓度的增大,微孔膜断面结构由双连续结构转变为蜂窝状结构,且膜孔孔径减小,高于此浓度体系降温后只发生固-液相分离,微孔膜断面呈块状紧密堆积结构.较快的冷却速率有利于低PVDF浓度时较小孔径膜和高PVDF浓度时较小球粒尺寸膜的生成.  相似文献   

4.
膜材料是膜技术的核心,膜材料制备过程中的结构控制对膜性能起着决定性的作用.首先简要介绍了近年来国内外UF/MF膜技术与产业的现状,在此基础上综述了研究组近年来在TIPS法制备聚乙烯(PE)中空纤维微孔膜、双向拉伸法制备聚四氟乙烯(PTFE)微孔膜、熔融-纺丝法制备聚偏氟乙烯(PVDF)微孔膜、溶液相转化法制备PVDF超滤膜的膜结构控制和表面改性方面取得的研究进展.  相似文献   

5.
减压膜蒸馏法分离偶氮染料废水的研究   总被引:2,自引:0,他引:2  
采用减压膜蒸馏过程,实验研究了0.22μm的疏水性聚四氟乙烯(PTFE)微孔膜处理偶氮染料废水的可行性.实验研究了进料温度、进料浓度、进料流速、冷侧压力对膜通量及截留率的影响.实验结果表明,在所研究的工艺条件范围内,进料温度、进料流速的提高和进料浓度、冷侧压力的降低有利于膜通量增大;进料温度的提高和进料浓度、进料流速、冷侧压力的降低使截留率增大.降低膜面的水蒸气汽化的表观活化能是提高膜通量的重要措施.  相似文献   

6.
采用二乙醇胺水溶液为吸收剂于聚偏氟乙烯(PVDF)中空纤维膜组件中吸收CO_2,研究了膜吸收过程中延缓膜润湿的方法.实验分别考察了气相压力的加压方式、加压时长以及液相添加无机盐对膜浸润的影响,并对膜浸润进行了理论分析.实验结果表明,随着气相间歇加压的压力增大,膜浸润百分数最多下降33%,气相间歇加压存在最优的加压时长和合理的加压程序.保持气相压力持续为高压态,并不能有效地延缓膜润湿.通过向吸收剂中添加无机盐成分,可以减少自发浸润的进行,在吸收过程中膜浸润率下降16.7%.  相似文献   

7.
采用原位聚合的方法得到聚偏氟乙烯(PVDF)与聚甲基丙烯酸羟乙酯(PHEMA)的均相共混溶液,以不同配比的水和溶剂磷酸三乙酯(TEP)的混合溶液作为凝固浴,通过非溶剂复合热诱导相分离方法,制备了系列具有互穿网络结构孔的亲水性PVDF微孔膜.X射线光电子能谱(XPS)分析表明,随着凝固浴中水含量的增加,PHEMA在PVDF微孔膜表面富集度增加.原子力显微镜(AFM)和扫描电镜(SEM)发现,随着凝固浴中水含量的增加,PVDF微孔膜上表面由开孔结构逐渐发展为致密结构,且粗糙度随之减小.通过动态接触角测试发现,随着凝固浴中水含量的增加,改性PVDF微孔膜初始接触角由139.7°降低到64.7°,水滴在膜表面的浸润时间由313s减小到16s.水通量测试表明,随着凝固浴中水含量的增加,PVDF微孔膜的纯水通量由2 300L/(m2.h)减小到400L/(m2.h),但由于具有良好的可润湿性,改性干膜仍然保持与湿膜相当的水通量.  相似文献   

8.
聚偏氟乙烯膜的超疏水改性研究   总被引:3,自引:0,他引:3  
为提高疏水膜的疏水性能,使其可在膜蒸馏、膜吸收等领域有更广泛的应用.采用溶液相转移法制备超疏水性聚偏氟乙烯(PVDF)分离膜,考察了铸膜液中PVDF和非溶剂(低分子二醇类化合物PG)的浓度对膜润湿性能的影响.结果表明,通过改变铸膜液中PVDF、PG的浓度,能使PVDF膜的表面静态接触角从75.1°提高到161.7°,滚动角仅为15.8°.还研究了PVDF复合膜的制备条件对膜润湿性能的影响,结果表明,在一定的非溶剂浓度范围,增加复合膜涂覆液中非溶剂PG的加入量,有利于得到较高的复合膜表面接触角,但膜丝在涂覆液中的浸泡时间也需要相应延长.当非溶剂PG的质量分数为39.1%、浸泡时间为50 s时,复合膜表面接触角达到了155°.  相似文献   

9.
采用标准孔径为0.1μm的亲水PVDF(聚偏氟乙烯)微滤膜和0.2μm的PTFE(聚四氟乙烯)膜,研究了温度、压力、浓度等操作条件对BSA溶液死端微滤膜通量的影响.实验表明,温度、压力和浓度对微滤膜通量有重要影响,通量随温度升高而增大;随浓度的增大而减小;当压力上升到0.14 MPa时,通量将不随压力变化,达到极限通量.在实验范围内(0.04~0.16 MPa,18~30℃),对于去离子水,通量和温度成良好的线性关系,通量随温度、压力的变化关系分别为ln(J/J)w=-0.021 9T-13.993和ln(J/Δp)w=-1.958 4Δp 5.283 4;对于BSA溶液,则在0.04~0.14 MPa,20~30℃范围内,通量随温度、压力的变化关系分别为JE/JT=ln(-0.004 5T2 0.230 9T)和ln(J/Δp)=-3.576 7Δp 4.627 7.溶液浓度增大,稳态通量下降;当溶液浓度达到一定值时,由于滤饼层厚度趋向平衡厚度,稳态通量将近似恒定.  相似文献   

10.
采用改进的水蒸气(或称水雾蒸气)诱导成膜的方法制备强疏水性的聚偏氟乙烯(PVDF)微孔膜.在制膜液中添加了正硅酸乙酯(TEOS),水蒸气中添加了碱后,制备的PVDF/Si杂化微孔膜的疏水性更强,水接触角得到较大提高.实验初步考察了TEOS的浓度、环境相对湿度、蒸汽中凝胶时间和蒸汽中碱的浓度对膜表面接触角的影响.结果表明,在一定范围内,膜上表面的接触角随TEOS的浓度、相对湿度和蒸汽中凝胶时间的增加而增大.扫描电镜(SEM)和原子力显微镜(AFM)照片显示,改进的蒸汽诱导法形成的杂化膜上表面无致密皮层,呈网状多孔结构并附着微米级的球形颗粒,且蒸汽中适宜的碱浓度有利于球状颗粒的形成和长大;断面呈对称的海绵状结构.  相似文献   

11.
利用聚乙烯吡咯烷酮(PVP)的自交联以及与聚偏氟乙烯(PVDF)的互交联,实现了PVDF微孔膜的亲水化改性.考察了溶液浓度、反应时间等因素对改性PVDF膜性能的影响,采用FT-IR、NMR、接触角和水通量等测试方法表征改性前后PVDF膜的性能.结果表明,自交联PVP的强吸水性使得改性后的PVDF膜(PVDF-cl-PVP膜)亲水性显著提高,与水的接触角45 s内即可降至0°,膜的纯水通量为600 L/(m2·h).PVDF与PVP的互交联以及PVP的自交联结构使得PVP牢牢固定于PVDF微孔膜外表面及膜内部孔通道表面,实现了PVDF微孔膜的永久亲水化.PVDF-cl-PVP膜经纯水反复清洗后仍能保持很高的亲水性.经PVP改性后,PVDF膜的通量恢复率提高了16%,表明PVDF-cl-PVP膜的抗污染性得到显著提高.  相似文献   

12.
通过浸没沉淀相转化的方法制备了聚偏氟乙烯(PVDF)/聚酰亚胺(PI)共混膜,使用4,4′-二氨基二苯乙烯-2,2′-二磺酸与三乙胺(DASD-TEA)溶液修饰共混膜表面,制备出PVDF/PI阳离子交换膜.探究了DASD-TEA溶液的浸泡时间、浸泡温度、DASD浓度与PI的浓度对PVDF/PI阳离子交换膜脱盐率的影响,得出最优的铸膜液配比为质量分数19.0的PVDF、1.0%的PI和80.0%的N,N-二甲基甲酰胺(DMF);最佳的DASD-TEA溶液修饰条件为质量分数0.03%的DASD,浸泡时间为10.0 min,浸泡温度为50.0℃.最佳条件下,PVDF/PI阳离子交换膜的离子交换容量为0.32 mmol/g,含水率为38.6%,纯水渗透率为500 L/(m~2·h·MPa),接触角为81.9°,膜面电阻为2.96Ω·cm~2.采用3组膜对的电渗析装置在电压4 V和流量40 L/h下对2 000 mg/L的NaCl溶液进行了120 min的脱盐实验,PVDF/PI阳离子交换膜的脱盐率为商品化阳离子交换膜的1.33倍,其脱盐性能高于商品化阳离子交换膜.  相似文献   

13.
采用溶液涂覆-浸没相分离法对聚偏氟乙烯膜(PVDF)进行表面复合改性,制备了超疏水分离膜。初步考察了涂覆液中PVDF固含量和涂覆条件(浸泡时间、预蒸发时间、凝固浴组成和凝固浴温度)对复合膜疏水性能的影响。实验结果表明,当涂覆液中PVDF含量为1.88%(质量分数)时,膜丝有最大接触角136°;复合膜的接触角随浸泡时间的延长呈现先增大后减小的趋势,当浸泡时间为40s时,接触角最大,达到133°;在较短时间内(0~5s),预蒸发时间对复合膜的接触角影响不大;复合膜的接触角随着凝固浴中DMAc含量的增加而逐渐减小,随着凝固浴温度的增大而增大,当凝固浴温度为65℃时,膜表面的接触角增至153°。  相似文献   

14.
采用熔体挤出拉伸法以高、低分子量混合聚偏氟乙烯(PVDF)为原料制备微孔膜,研究了不同热拉伸温度对PVDF微孔膜表面形貌及结晶行为的影响,通过扫描电子显微镜、红外光谱仪、X射线衍射仪和差示扫描量热仪等测试手段分别对微孔膜的形态、结构、晶型进行表征.结果表明,热拉伸温度对PVDF微孔膜的成孔形貌、孔隙率、结晶度及β相含量均有影响.热拉伸温度为80℃时,微孔膜结晶度为58.86%,β相的相对含量最高达到42.50%,此时微孔膜的力学性能最佳;而当热拉伸温度为120℃时,PVDF微孔膜的成孔分布更加均匀,其孔隙率可达到最大值31.51%.  相似文献   

15.
以聚偏二氟乙烯(PVDF)为原料,邻苯二甲酸二丁酯(DBP)和二苯甲酮(DPK)为稀释剂,通过不同的相分离机理(固-液相分离或液-液相分离)制备了不同结构和性能的多孔膜.建立了聚合物/稀释剂体系的二元相图,同时采用扫描电子显微镜(SEM)、孔隙率和水通量测试、差示扫描量热仪(DSC)和X射线衍射仪(XRD)对多孔膜的结构和性能进行表征.研究结果表明:由PVDF/稀释剂体系制备的多孔膜断面结构主要为表面带有微孔的球粒.PVDF/DPK体系在PVDF含量为20 wt%、0℃水浴冷却的条件下获得了双连续结构的多孔膜,其孔隙率和水通量优于同体系其它多孔膜.PVDF多孔膜的结晶度随稀释剂含量的增大而增大,随冷却介质温度的升高而增大.PVDF多孔膜的晶型为α晶型,该晶型不随聚合物含量和冷却介质温度发生变化.  相似文献   

16.
基于醇胺溶液在疏水膜上的吸附入侵机理,采用表面张力-接触角和黏附张力法并结合吸附方程,测得了二乙醇胺(DEA)分子在PVDF中空纤维疏水膜壁上的吸附量.进而明确了液气相压差在自发浸润过程中起到的重要作用,提出了多层三相接触线的观点,并辅以浸润实验进行验证.通过膜孔中侵入溶液的平均质量法计算出DEA溶液在PVDF中空纤维膜孔道中的平均接触角接近90°.并将膜的渗入方程与MATLAB模拟算法相结合,建立了膜的自发浸润动力学模型,与浸润实验结果具有良好的吻合性.  相似文献   

17.
聚偏氟乙烯微孔膜一步法亲水化改性研究   总被引:1,自引:0,他引:1  
采用高能电子束预辐照接枝的方法,研究了液相丙烯酸(AAc)和苯乙烯磺酸钠(SSS)双元混合体系对聚偏氟乙烯(PVDF)微孔膜的接枝改性,用一步法直接制备了含有羧酸基团和磺酸基团的强亲水性PVDF微孔膜.考察了辐照剂量、反应时间、反应温度、单体浓度、单体配比以及反应溶液pH值等对接枝率的影响.采用FT-IR、接触角和水通量表征改性前后的膜表面性质和膜性能.结果表明,接枝改性后膜的亲水性增强,接触角随接枝率的增加而降低,水通量随接枝率的增加呈现出先升后降的变化,这主要是由于高接枝率时膜表面和膜孔被接枝链堵塞.  相似文献   

18.
以聚乙烯醇(PVA)为成膜载体,由聚四氟乙烯(PTFE)分散乳液制得PTFE微孔膜,通过对不同烧结温度的研究得出PTFE烧结模型,在烧结初期有利于PTFE形成微孔结构.在成膜体系中引入纳米无机粒子,得到PTFE/无机粒子共混平板膜.研究了无机粒子对共混膜结构及性能的影响,结果表明PTFE与碳酸钙(CaCO_3)粒子的粘结性差,在烧结成型过程中PTFE基质相与CaCO_3产生界面相分离形成微孔,形成的界面微孔不同于PTFE双向拉伸产生的纤维-结点状裂隙孔结构.共混膜经适当拉伸后孔隙率显著提高.  相似文献   

19.
PVDF/PS共混微孔膜的制备   总被引:8,自引:0,他引:8  
将聚偏氟乙烯和聚砜共混,通过溶胶一凝胶相转化法研制高孔隙率微孔膜.考察了聚合物浓度、PVDF/PS配比、溶剂种类和组成、添加剂浓度、凝胶浴温度和组成、溶剂挥发时间和热处理温度对膜孔径和孔隙率的影响.实验发现:使用DMF/DMAc混合溶剂可提高膜孔径和孔隙率;随LiCl含量的增加,膜孔径和孔隙率逐步增加;凝胶浴温度对膜的水通量没有太大的影响,但凝胶浴组成对膜性能有很大的影响;延长溶刺挥发时间,导致平均孔径减小.选择适当的膜液组成,可制得孔径为0.2~1.0μm,孔隙率达到90%以上的PVDF/PS共混微孔膜,而且共混膜的孔隙率比单组分PVDF膜有大幅度的提高.说明共混化是一种改善PVDF膜性能的有效方法,具有极好的实用开发价值,  相似文献   

20.
热致相分离法制备聚偏氟乙烯微孔膜的结构及性能研究   总被引:2,自引:0,他引:2  
以聚偏氟乙烯(PVDF)和邻苯二甲酸二丁酯(DBP)作为膜材料和稀释剂,采用热致相分离法(TIPS法)制备了聚偏氟乙烯(PVDF)微孔膜.通过差示扫描量热仪(DSC)测试了不同混合体系的固-液相分离温度,利用扫描电镜(SEM)观察和研究了稀释剂、冷却条件、聚合物浓度对膜断面微观结构的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号