首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
端基对超支化聚合物改性环氧树脂性能的影响   总被引:4,自引:0,他引:4  
研究了分别具有羟端基和环氧端基的脂肪族超支化聚酯对双酚A环氧树脂/酸酐固化体系力学性能及热性能的影响,分析对比了两种不同端基超支化聚酯改性环氧树脂浇注体性能时机理上的差别。结果表明,在相同含量和代数时,具有环氧端基的超支化聚酯能更好地提高环氧树脂浇注体的力学性能,同时还使玻璃化转变温度有所提高。分析发现,这是由于环氧端基的存在使得超支化聚酯与树脂基体有很好的相容性,从而有利于形成合适的第二粒子分散相,表现出比羟端基超支化聚酯更好的改性效果。  相似文献   

2.
通过质子转移聚合,采用双酚A和三羟甲基丙烷三缩水合成了一种芳香族聚醚型超支化环氧(EHBP),将其添加到双酚A缩水甘油醚型环氧(DGEBA)中制备成杂化树脂进行增韧改性。采用酸酐固化后,利用差示扫描量热仪(DSC)和热重分析仪(TGA)对固化树脂的玻璃化转变温度和热稳定性进行了表征,并对其拉伸强度、弯曲强度和冲击强度进行了测试。结果表明向DGEBA中添加EHPE可以在不影响材料热性能和拉伸强度的情况下改善其韧性。在EHBP添加量为15%时,材料的冲击强度由纯DGEBA的19kJ/m2提高到28kJ/m2。扫描电子显微镜对材料冲击断面的形貌的表征表明,EHBP对环氧树脂的增韧机理为原位均相增韧。  相似文献   

3.
以第3代环氧端基脂肪族超支化聚酯(EHBP)增韧的环氧树脂(E-51)为基体材料,超支化聚酯基二茂铁(HBPE-Fc)为吸波剂,制备具有一定力学承载及电磁性能的超支化聚酯基二茂铁/环氧树脂(HBPE-Fc/E-51)复合材料,并通过力学性能测试及扫描电镜、矢量网络分析仪等研究了该复合材料的力学及电磁性能。结果表明,添加较低含量的HBPE-Fc能较好地改善环氧树脂体系的拉伸及冲击性能,第4代HBPE-Fc质量分数为2%时,与纯环氧树脂体系相比,HBPE-Fc/E-51复合材料的拉伸强度、断裂伸长率和冲击强度分别提高了21.81%、34.32%和15.41%,对固化体系的拉伸断面分析发现引入HBPE-Fc后材料表现出韧性断裂。HBPE-Fc/E-51复合材料的玻璃化转变温度在105.29~130.27 ℃之间,具有良好的热稳定性,同时该复合材料具有一定的电磁特性。  相似文献   

4.
采用兼有脂肪族和芳香族结构的超支化环氧树脂(HBER)增韧改性苯并(噁)嗪树脂(MDA),制备出不同质量比的MDA/HBER均相共混体系.通过傅里叶变换红外光谱、差示扫描量热及动态力学性能分析仪研究了共混体系固化行为和交联网络结构.利用流变仪对共混体系进行动态黏度测试,结果表明在60~190℃之间出现一段较宽的低黏度平台.力学生能测试表明,当HBER质量分数为10%时,共混固化物弯曲性能最优,韧性最佳.共混固化物断面形貌呈现出原位增韧增强特征.  相似文献   

5.
近年来,基于超支化聚合物(尤其是聚酯)的新型抗冲改性剂已有相关报道。由羟基、羰基以及环氧封端的超支化聚酯可以制备低黏度的共混物。加入少量这些聚酯就足以极大地提高共混物的韧性而不降低其强度以及玻璃化温度。超支化聚合物(HBP)的重要特征是其支化重复单元的极高支化度,以及聚合物核壳结构表面带有的大量功能性端基。由于高度支化的结构阻止了链缠结的发生,超支化聚合物通常在熔融态或溶液中显示出较低的黏度。超支化聚合物的性能主要受数目众多的端基影响,因此进行端基改性可以得到不同用途的超支化聚合物。  相似文献   

6.
综述了各类超支化环氧树脂的合成工艺,主要包括聚酯型、聚醚型、聚酯聚醚型和聚烷烃超支化环氧树脂。超支化环氧树脂的合成工艺主要有缩水甘油直接法、环氧氯丙烷间接法、原子转移聚合法、双键加成法。对超支化环氧树脂的合成工艺、产品特征进行了分析。总结了超支化环氧树脂作为增韧剂的应用现状及发展前景。  相似文献   

7.
研究了二聚酸二缩水甘油酯及其改性胺环氧固化剂的制备工艺,制得具有增韧作用的环氧树脂固化剂。采用羧酸-环氧氯丙烷(ECH)酯化、闭环二步法合成二聚酸二缩水甘油酯,其最佳合成工艺条件为:催化剂为四丁基溴化铵且用量为二聚酸(DA)质量的2%,酯化反应温度为90℃,DA∶ECH(摩尔比,下同)=1∶10,环化反应温度为55℃,NaOH质量分数为30%,DA∶NaOH=1∶4。将制得的缩水甘油酯与异佛尔酮二胺进行胺化反应得到改性胺固化剂,其与环氧树脂618固化产物的冲击强度为29.6kJ/m~2,体现出优异的增韧效果。  相似文献   

8.
选用一款自制的具有超支化分子结构的环氧树脂(EHBP),引入到双酚A型环氧树脂体系中参与树脂共固化,制备了一种超支化分子改性环氧树脂材料。采用DSC非等温曲线外推法,研究了混合树脂体系的固化反应动力学行为,优化了树脂的固化工艺条件。分析发现,EHBP对双酚A型环氧树脂具有明显增韧改性效果。在EHBP最优加入量5%的情况下,与未添加超支化分子的对照样相比,固化物的拉伸强度、弯曲强度、压缩强度和冲击强度均提升了约20%,且拉伸断裂伸长率提高了24%。动态力学分析(DMA)结果表明,EHBP的引入可以显著提升材料的阻尼峰强度,损耗模量从138MPa提高至185MPa,即有利于环氧树脂固化物的阻尼减振性能。单悬臂模式下震动测试频率从1Hz提高至100Hz,材料的阻尼峰从125℃向高温方向移动至156℃,对高频高温下的材料的阻尼性能有一定贡献。  相似文献   

9.
用聚邻苯二甲酸乙酯(PEP)和邻苯二甲酸.对苯二甲酸乙二酯共聚物改善甲基六氢化邻苯二甲酸酐固化的3,4-环氧基环己甲酸3’,4‘-环氧基环己甲酯脂环族环氧树脂(Celoxide 2021TM)的脆性。芳族聚酯在没有溶剂的情况下可溶于环氧树脂中,也是固化环氧树脂有效的增韧改性剂。例如,固化树脂体系中加入质量分数为20%PEP(MW,7400)就使断裂韧性增加130%,并且没有力学性能和热性能损失。根据改性的环氧树脂体系的形态及动态的粘弹性行为讨论了这一增韧机理。  相似文献   

10.
超支化聚合物在不影响工艺性的前提下对环氧树脂有明显的增强、增韧作用。本文主要概述了超支化聚合物对环氧树脂力学性能、耐热性能的影响,主要包括:聚酯超支化聚合物改性环氧树脂、聚酰胺/聚酰亚胺/聚乙烯亚胺超支化聚合物改性环氧树脂、有机硅超支化聚合物改性环氧树脂以及其他超支化聚合物改性环氧树脂等。此外,还指出了目前超支化聚合物改性环氧树脂的缺点以及未来的发展方向。当前限制HBPs在环氧树脂改性领域内大规模应用的主要缺点在于大多数HBPs合成步骤繁琐复杂,合成成本较高。鉴于此,在未来随着更简单、绿色的合成方法的出现,HBPs在其他新兴领域以及改性树脂中的应用会越来越广泛。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号