首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
An in situ chemical synthesis approach has been employed to prepare an Ag-chemically converted graphene (CCG) nanocomposite. The reduction of graphene oxide sheets was accompanied by generation of Ag nanoparticles. The structure and composition of the nanocomposites were confirmed by means of transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray diffraction. TEM and AFM results suggest a homogeneous distribution of Ag nanoparticles (5–10 nm in size) on CCG sheets. The intensities of the Raman signals of CCG in such nanocomposites are greatly increased by the attached silver nanoparticles, i.e., there is surface-enhanced Raman scattering activity. In addition, it was found that the antibacterial activity of free Ag nanoparticles is retained in the nanocomposites, which suggests they can be used as graphene-based biomaterials.   相似文献   

2.
We report an epitaxial growth of graphene, including homo- and hetero-epitaxy on graphite and SiC substrates, at a temperature as low as ∼540 °C. This vapour-phase epitaxial growth, carried out in a remote plasma-enhanced chemical vapor deposition (RPECVD) system using methane as the carbon source, can yield large-area high-quality graphene with the desired number of layers over the entire substrate surfaces following an AB-stacking layer-by-layer growth model. We also developed a facile transfer method to transfer a typical continuous one layer epitaxial graphene with second layer graphene islands on top of the first layer with the coverage of the second layer graphene islands being 20% (1.2 layer epitaxial graphene) from a SiC substrate onto SiO2 and measured the resistivity, carrier density and mobility. Our work provides a new strategy toward the growth of graphene and broadens its prospects of application in future electronics.   相似文献   

3.
We report a simple method to produce graphene nanospheres (GNSs) by annealing graphene oxide (GO) solution at high-temperature with the assistance of sparks induced by the microwave absorption of graphite flakes dispersed in the solution. The GNSs were formed by rolling up of the annealed GO, and the diameters were mostly in the range 300–700 nm. The GNS exhibited a hollow sphere structure surrounded by graphene walls with a basal spacing of 0.34 nm. Raman spectroscopy and X-ray photoelectron spectroscopy of the GNSs confirmed that the GO was efficiently reduced during the fabrication process. The resulting GNSs may open up new opportunities both for fundamental research and applications, and this method may be extended to the synthesis of other nanomaterials and the fabrication of related nanostructures.   相似文献   

4.
We demonstrate an aqueous solution method for the synthesis of a Ag-TiO2-reduced graphene oxide (rGO) hybrid nanostructure (NS) in which the Ag and TiO2 particles are well dispersed on the rGO sheet. The Ag-TiO2-rGO NS was then used as a template to synthesize Pt-TiO2-rGO NS. The resulting hybrid NSs were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), and catalytic studies. It was found that TiO2-rGO, Ag-TiO2-rGO and Pt-TiO2-rGO NSs all show catalytic activity for the reduction of p-nitrophenol to p-aminophenol by NaBH4, and that Pt-TiO2-rGO NS exhibits the highest catalytic activity as well as excellent stability and easy recyclability.   相似文献   

5.
Inorganic fullerene-like WS2 and MoS2 nanoparticles have been synthesized using exclusively solid precursors, by reaction of the corresponding metal oxide nanopowder, sulfur and a hydrogen-releasing agent (NaBH4 or LiAlH4), achieved either by conventional furnace heating up to ∼900 °C or by photothermal ablation at far higher temperatures driven by highly concentrated white light. In contrast to the established syntheses that require toxic and hazardous gases, working solely with solid precursors permits relatively safer reactor conditions conducive to industrial scale-up.   相似文献   

6.
An essay on synthetic chemistry of colloidal nanocrystals   总被引:1,自引:0,他引:1  
The central goal of synthetic chemistry of colloidal nanocrystals at present is to discover functional materials. Such functional materials should help mankind to meet the tough challenges brought by the rapid depletion of natural resources and the significant increase of population with higher and higher living standards. With this thought in mind, this essay discusses the basic guidelines for developing this new branch of synthetic chemistry, including rational synthetic strategies, functional performance, and green chemistry principles.   相似文献   

7.
Chemical reduction of graphene oxide represents an important route towards large-scale production of graphene sheets for many applications. Thus far, gas-phase reactions have been demonstrated to efficiently reduce graphene oxide, but a molecular understanding of the reaction processes is largely lacking. Here, using molecular dynamics simulations, we compare the reduction of graphene oxide in different environments. We find that NH3 affords more efficient reduction of hydroxyl and epoxide groups than H2 and vacuum annealing partly due to lower energy barriers. Various reduction paths of oxygen groups in NH3 and H2 are quantitatively identified. Furthermore, we show that with the combination of vacancies and oxygen groups, pyridinic- or pyrrolic-like nitrogen can readily be incorporated into graphene. All of these nitrogen configurations lead to n-doping of the graphene. Our results are consistent with many previous experiments and provide insights towards doping engineering of graphene.   相似文献   

8.
The controlled etching of graphite and graphene by catalytic hydrogenation is potentially a key engineering route for the fabrication of graphene nanoribbons with atomic precision. The hydrogenation mechanism, though, remains poorly understood. In this study we exploit the benefits of aberration-corrected high-resolution transmission electron microscopy to gain insight to the hydrogenation reaction. The etch tracks are found to be commensurate with the graphite lattice. Catalyst particles at the head of an etch channel are shown to be faceted and the angles between facets are multiples of 30°. Thus, the angles between facets are also commensurate with the graphite lattice. In addition, the results of a post-annealing step suggest that all catalyst particles—even if they are not involved in etching—are actively forming methane during the hydrogenation reaction. Furthermore, the data point against carbon dissolution being a key mechanism during the hydrogenation process.   相似文献   

9.
Monolayer and bilayer graphene sheets have been produced by a solvothermal-assisted exfoliation process in a highly polar organic solvent, acetonitrile, using expanded graphite (EG) as the starting material. It is proposed that the dipole-induced dipole interactions between graphene and acetonitrile facilitate the exfoliation and dispersion of graphene. The facile and effective solvothermal-assisted exfoliation process raises the low yield of graphene reported in previous syntheses to 10 wt%–12 wt%. By means of centrifugation at 2000 rpm for 90 min, monolayer and bilayer graphene were separated effectively without the need to add a stabilizer or modifier. Electron diffraction and Raman spectroscopy indicate that the resulting graphene sheets are high quality products without any significant structural defects.   相似文献   

10.
We demonstrate that the near-infrared (NIR) absorptivity of semiconducting single-walled carbon nanotubes (s-SWCNTs) can be harnessed in blended heterojunctions with the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Photogenerated charge separation is efficiently driven by the ultrahigh interfacial area of the blends and the favorable energy offsets between the two materials. NIR-sensitive photovoltaic and photodetector devices utilizing the stack (indium tin oxide/ca. 10 nm s-SWCNT:PCBM/100 nm C60/10 nm 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/Ag) were fabricated with NIR power conversion efficiencies >1.3% and peak, zero bias external quantum efficiency of 18% at λ = 1205 nm.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号