首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
高硅铝合金电子封装材料以其良好的热物理性能与力学性能,越来越受到材料和电子封装行业研究者的重视,但是其焊接性能与机械性能不理想。铝硅合金梯度板材可解决电子封装材料低膨胀与高机械性能的矛盾,其高硅端热膨胀系数低,导热好,适于裸集成电路;低硅端机械性能高,可焊接,便于精加工和封装,是未来武器装备高集成电路封装构件重要的备选材料。针对这类材料的制备问题,提出了双金属一步式喷射成形技术的概念,并对喷射工艺参数进行了初步的探索研究。2个沉积器的间距可以影响复合板材的外形轮廓与内部硅成分的梯度分布,模拟结果显示间距大于等于40 mm时,出现台阶而且成分变化有突变。  相似文献   

2.
应用于电子封装的新型硅铝合金的研究与开发   总被引:9,自引:2,他引:7  
王敬欣  张永安 《材料导报》2001,15(6):18-20,17
较详细地论述了新型硅铝(Al-70%Si)合金的制备,机械加工及焊接性能,物理性能,应用Osprey喷射沉积成形技术开发出的新型硅铝(Al-70%Si)合金,晶粒细小,微观结构各向同性,可用一般刀具机加工,机加工后的表面可以镀镍,铜,银和金,电镀层与基体结合牢固,在450度不会开裂,硅铝合金的热传导率及热膨胀系数与半导体的相近,并有其它优良性能,与传统的电子封装材料相比有更好的应用价值。  相似文献   

3.
高硅铝合金轻质电子封装材料研究现状及进展   总被引:10,自引:2,他引:10  
综合比较了现有电子封装材料的性能及其在航空航天领域中的应用现状,较详细地阐述了高硅铝合金电子封装材料的性能特点、制备方法及研究现状,指出了高硅铝合金轻质电子封装材料的发展方向.  相似文献   

4.
高含量Si-Al电子封装复合材料的研究进展   总被引:3,自引:0,他引:3  
王磊  李金山  胡锐  朱冠勇  陈忠伟 《材料导报》2004,18(Z1):222-224
随着微电子技术的高速发展,SiP/Al作为新型的电子封装材料受到了广泛的重视.根据近年来报道的有关资料,对SiP/Al电子封装复合材料的组织与性能、制备工艺及应用发展进行了综述,并指出了未来的研究方向.  相似文献   

5.
喷射成形轧辊材料组织和性能分析   总被引:2,自引:0,他引:2  
对一种高速钢轧辊材料的喷射成形态和相应的母合金铸态试样的显微组织和性能进行了分析。与高速钢母合金铸态试样相比,高速钢喷射成形态试样的组织细小,偏析少,碳化物分布均匀。碳化物的种类和形态发生了变化。喷射成形态试样的维氏硬度值比较低,原因是组织中残余奥氏体量比较多。高温拉伸试验表明,喷射成形态试样在780~810℃温度范围内存在很高的拉伸延伸率,可以在该温度区间内承受大变形热加工。  相似文献   

6.
喷射沉积硅铝电子封装材料的组织与性能   总被引:5,自引:0,他引:5  
采用喷射沉积技术制备了电子封装材料70%Si-Al合金板材,制备的合金具有细小均匀的组织结构,各向同性,Si相粒子分布弥散.分析表明合金具有和半导体材料接近的热膨胀系数(7×10-6~8×10-6/℃)、优良的导热性能(>100W/m·K),实验表明合金具有较好的机械加工性能,可以用普通的刀具进行加工,初步研究了热等静压在合金制备中的应用.  相似文献   

7.
电子材料     
《新材料产业》2011,(5):83-85
喷射成形的硅铝合金材料产业化 最近,江苏豪然喷射成形合金有限公司自主创新,成功开发了国内首台套大型喷射成形装备,自动生产控制系统和成熟工艺技术。新品硅铝合金及高强度铝合金投入批量生产,其技术指标达到国际先进水平,具有自主知识产权,核心技术获得国家专利。  相似文献   

8.
放电等离子烧结制备高导热SiC_P/Al电子封装材料   总被引:1,自引:0,他引:1       下载免费PDF全文
为了满足电子封装材料越来越高的性能要求,采用放电等离子烧结(SPS)工艺制备了SiCP/Al复合材料。研究了烧结温度和保温时间等工艺条件对SiCP/Al复合材料组织形貌和性能的影响。结果表明:采用SPS烧结,温度为700℃、保温时间为5 min时,所制备的70 vol%SiCP/Al复合材料热导率达到195.5 W(m.K)-1,与传统15%W-Cu合金相当,是Kovar合金的10倍,但密度小,仅为3.0 g.cm-3;其热膨胀系数为6.8×10-6K-1,与基板材料热膨胀系数接近;抗弯强度为410 MPa,抗拉强度为190 MPa,达到了电子封装材料对热学性能和力学性能的要求。  相似文献   

9.
包覆轧制过共晶高硅铝合金材料的性能研究   总被引:1,自引:1,他引:1  
针对应用广泛的过共晶高硅铝合金,采用熔炼铸造与包覆轧制相结合的方法,制备了Si含量>26%的高硅铝合金材料,通过电子金相显微镜和扫描电镜对合金材料的微观组织进行了分析,并对材料进行了热膨胀系数、气密性及抗拉强度的测定.实验结果表明:包覆轧制可有效阻止脆性材料裂纹的扩展;在100~400℃,Si含量为28.49%的高硅铝合金材料在纵向的热膨胀系数的平均值为16.3×10-6,横向为16.2×10-6,气密性为0.9966×107,材料纵向的室温抗拉强度为135.610 MPa;Si含量为32.08%的材料,在100~400℃,纵向的热膨胀系数的平均值为1 5.9×106,横向为15.8×106,气密性为3.4×10,材料纵向的室温抗拉强度为93.96MPa.  相似文献   

10.
过共晶Al-Si合金作为最具代表性的喷射成形材料在轻质、耐热、耐磨结构件,尤其是发动机缸套的工业化生产方面,已获得大量的应用。目前商用化的过共晶Al-Si合金在热稳定性和高温性能方面的不足已成为开发高性能发动机的限制因素,因而也成为近年来各研究机构的主要研究方向。用Fe,Mn,Cr为主的合金化代替传统的以Cu,Mg为主的合金化,使Al2Cu,Al2CuMg等强化相被稳定性更高的α-Al(Fe,TM)Si相所代替,达到了组织和室温、高温性能的双重优化,制备出继PEAK和OSPREY公司之后开发的可应用于更高性能发动机缸套部件的新型过共晶Al-Si合金。  相似文献   

11.
电子封装用高硅铝合金热膨胀性能的研究   总被引:3,自引:0,他引:3  
张伟  杨伏良  甘卫平  刘泓 《材料导报》2006,20(Z1):348-350
采用雾化喷粉与真空包套热挤压工艺制备了高硅铝合金电子封装材料,测定了合金在100~400℃间的热膨胀系数值,并运用理论模型对该温度区间的热膨胀系数进行了计算,分析了高硅铝合金材料热膨胀性能的影响因素.结果表明:Si相作为增强体能显著改善Al-Si合金的微观组织与热膨胀性能,430℃热挤压下的高硅铝合金材料在100~400℃之间的热膨胀系数平均值与Turner模型很接近.  相似文献   

12.
林锋  冯曦  李世晨  任先京  贾贤赏 《材料导报》2006,20(3):107-110,115
微电子集成技术的快速发展对封装材料提出了更高的要求.在传统封装材料已不能满足现代技术发展需要的情况下,新型硅基铝金属复合材料脱颖而出,以其优异的综合性能成为备受关注的焦点.高体积分数硅基体带来的低热膨胀系数能很好地与芯片相匹配,连通分布的金属(铝)确保了复合材料的高导热、散热性,两者的低密度又保证了复合材料的轻质,尤其适用于高新技术领域.重点探讨了硅基铝金属铝复合材料的主要制备技术及其组织性能机理,并对其未来发展作出展望.  相似文献   

13.
研究不同的固溶温度热处理对变形喷射成形GH742y合金组织与性能的影响.结果表明:喷射成形GH742y合金晶粒细小、成分均匀、无宏观偏析,晶粒尺寸约35μm左右,固溶温度对其影响不大,具有明显的晶粒抗长大性.γ'相的固溶温度为1130℃,不同固溶温度的热处理下,主要强化相γ'相析出的形状和大小不同,对合金的力学性能影响不大,不同热处理状态合金的屈服强度都在1150MPa左右,而持久性能也普遍在200h.  相似文献   

14.
赵龙  宋平新  张迎九  杨涛 《材料导报》2018,32(11):1842-1851
随着电子行业的不断发展,第二代热沉材料如钨/铜封装材料、钼/铜封装材料、碳化硅/铝封装材料等已不能满足该领域日益增长的需求。金刚石的热导率为2 300 W/(m·K),是已知热导率最高的物质;铜的热导率为401 W/(m·K),在众多金属中仅次于Ag。金刚石/铜复合材料具有诸多优点:(1)热导率高、强度大;(2)热膨胀系数能够通过改变金刚石与铜的体积分数加以调控,以实现与硅、锗等半导体材料的匹配;(3)具有比金刚石/银复合材料更低的成本以及比金刚石/铝、钨/铜、钼/铜等材料更高的热导率。因此,金刚石/铜复合材料是一种理想的电子封装候选材料。金刚石/铜复合材料的制备技术多种多样,其中粉末冶金、放电等离子体烧结、液相渗透是最适合该复合材料特性也是研究最广泛的技术。液相渗透法又分为无压熔渗法和压力辅助熔渗法,与粉末冶金法和放电等离子体烧结法相比,该法成本低、操作性强,成为近年研究的重点方向。目前,国际上已制备出热导率高达900 W/(m·K)的金刚石/铜复合材料。另一方面,金刚石与铜界面润湿度较差,导致复合材料致密度不高且热导率不易提升。解决金刚石与铜界面润湿度较差的问题成为制备金刚石/铜复合材料的关键,也促使国内外研究者不断尝试在制备工艺环节引入改进措施。目前已探索出两种较为可行的方法:(1)在复合材料制备过程中添加少量B、Cr等活性元素,使这些活性元素与铜形成合金;(2)在制备金刚石/铜复合材料之前,采用化学镀、扩散烧结、盐浴、磁控溅射等手段预先在金刚石表面包覆一层均匀的碳化物。本文总结了金刚石/铜复合材料的国内外最新研究进展及主流制备技术,论述了影响复合材料的热膨胀系数及热导率的主要因素。文章还介绍了改善金刚石与铜的界面润湿度的方法,最后对金刚石/铜复合材料的发展进行了展望。  相似文献   

15.
李有奇  柯昌明  李楠 《材料导报》2006,20(Z1):470-472
采用轻质CaCO3(或纯铝酸钙水泥)和α-氧化铝为原料合成了二铝酸钙(CA2)材料,研究了反应原料、热处理温度和成型压力对CA2烧结性能和显微结构的影响,检测CA2的热膨胀系数,并借助XRD、TG-DSC和SEM等测试手段分析和观察了材料的合成过程及显微结构.结果表明:采用轻质CaCO3(或纯铝酸钙水泥)和活性氧化铝为原料可以合成低膨胀系数CA2材料;坯体成型压力对试样烧结性能没有显著影响;反应原料和热处理温度不同导致CA2材料的烧结性能和显微结构有较大的差异.  相似文献   

16.
高模量、低热膨胀系数聚酰亚胺杂化薄膜的制备   总被引:1,自引:0,他引:1  
通过在聚酰胺酸中加入正硅酸乙酯(TEOS)和硅烷偶联剂(KH550),制备了不同SiO2含量的PI/SiO2杂化薄膜.采用FTIR、TMA、SEM以及TGA分析了PI/SiO2杂化薄膜的性能和结构.结果表明,TEOS经水解缩合与聚酰亚胺(PI)形成了有机-无机杂化网络结构,SiO2均匀分散在聚酰亚胺基体中;SiO2和偶联剂的引入提高了杂化薄膜的热稳定性;随着SiO2含量的增加,PI/SiO2杂化薄膜的拉伸强度降低,但当SiO2含量达到20%时,弹性模量增大到3.4GPa.  相似文献   

17.
将不同量的中间相炭微球(MCMB)引入煤沥青后经过二次生长、融并和中间相重排,制备出层状结构良好和性能优异的针状焦(NCs)。用偏光显微镜观察和分析了所得中间相和半焦组织的结构;用X射线衍射仪和扫描电镜分析了NCs的微观结构;用高精度电阻率测试仪测试了电阻率;用热机械分析仪测定了热膨胀系数。结果表明:加入适量的MCMB有利于提高焦的有序性,促进针状焦石墨片层结构的形成,显著降低针状焦的电阻率和热膨胀系数值;MCMB的添加量(质量分数)低于50%时,NCs结构有序性随着添加量的提高而提高;MCMB的添加量超过50%,则焦的质量下降。MCMB的添加量为50%时电阻率和热膨胀系数值(0°~100℃)分别降低27.9%和45.7%,石墨化度提高46.2%。  相似文献   

18.
Aluminium‐magnesium‐scandium alloys offer good weldability, high corrosion resistance, high thermal stability and the potential for high strength by precipitation hardening. A problem of aluminium‐scandium alloys is the low solubility of about 0.3 mass‐% scandium when using conventional casting methods. The solution of scandium can be raised by higher cooling rates during solidification. This was realised by spray forming of Al‐4.5Mg‐0.7Sc alloys as flat deposits. Further cooling rates after solidification should also be high to prevent coarse precipitation of secondary Al3Sc. Therefore a cooling device was designed for the spray formed flat deposits. The flat deposits were rolled at elevated temperatures to close the porosity from spray forming. Microstructures, aging behaviour and tensile properties of the rolled sheets were investigated. Strength enhancements of about 100 MPa compared to conventional Al‐Mg‐Sc alloys were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号