首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
用Gleeble1500热模拟试验机进行单轴热压缩实验,研究了过共析钢在过冷奥氏体形变过程中的组织演变规律.结果表明:过冷奥氏体变形可以抑制网状渗碳体的形成,过冷奥氏体动态相变只得到珠光体组织,在继续变形过程中珠光体发生动态球化,得到超细化(α θ)复相组织.提高形变温度使过冷度降低,阻碍过冷奥氏体动态相变的进行;而降低应变速率使变形时间延长,有利于过冷奥氏体动态相变和珠光体动态球化的进行,但得到的超细化复相组织较为粗人.  相似文献   

2.
低碳钢超细晶铁素体的形成   总被引:1,自引:1,他引:0  
将含碳量(质量分数)为0.057%和0.18%的低碳钢在不同过冷度、变形温度、变形速率和变形量的条件下进行热模拟实验,研究了含碳量和热变形条件对超细晶粒形成的影响.结果表明,变形前快速冷却(20℃/s)至Ar3以上附近温度并进行超过50%变形量的变形,能强烈促进过冷奥氏体形变诱发铁素体相变,铁素体在奥氏体晶内平行的变形带上形核,并发生动态回复和再结晶,从而使组织细化.形变诱发的相变过程由碳的扩散所控制,当钢的含碳量比较高时,小过冷度、大变形量和中等变形速率有利于铁素体相变,晶界碳化物的析出能够抑制铁素体晶粒的长大,因而高碳含量钢表现出更好的细化晶粒效果.  相似文献   

3.
超细晶奥氏体在两相区大变形后的瞬态组织   总被引:1,自引:0,他引:1  
将一种低碳结构钢循环加热淬火得到超细晶粒奥氏体,再以20℃/s的速率将其冷却至两相区进行真应变量为2的大变形,分析了形变后的瞬态组织.结果表明:用该工艺制备的超细晶奥氏体在两相区的高速大变形的后期,始终呈现应变硬化特征,并伴随有一定程度的形变诱导相变或铁素体动态再结晶等软化行为;同时,在较低温度快速大变形容易在试样的个别碳过饱和区导致应变诱导孪晶马氏体组织的生成,且随着形变温度降低孪晶马氏体量增加-循环加热淬火前的原始组织影响奥氏体内碳浓度分布,在一定程度上影响冷却变形过程的应力应变行为和形变后的瞬态组织.  相似文献   

4.
TMCP在线软化处理中碳冷镦钢的研究开发   总被引:3,自引:0,他引:3  
采用热机械轧制工艺可使中碳钢(0.36%C左右)具有球化渗碳体的细晶显微组织,研究发现随变形温度的降低及变形量的增加其铁素体晶粒尺寸变小。由于形变诱发铁素体相变(DIFT),中碳钢在略高于Ar3温度时形变就可获得尺寸约2-3μm的超细铁素体晶粒。DIF体积分数随变形温度的降低以及变形应变的增加而增加,特别是当变形温度低于750℃时DlF体积分数显著增加,远远超过平衡铁素体体积分数值的54%。在低温及高应变条件下对钢进行形变,经过控制冷却后可获得合适的球化或退化显微组织。  相似文献   

5.
采用Gleeble热力模拟机对C-Mn钢热压缩变形后过冷奥氏体高温转变区进行二段冷却速率控制,通过冷却过程中施加微小应变,并根据应力-温度曲线,结合金相组织观察,研究了二段冷却速率对铁素体相变开始温度和相变组织的影响。结果表明:在过冷奥氏体高温转变区冷却相同时间,相对于连续冷却,当前段快冷,后段缓冷时,铁素体相变开始温度下降,相变的铁素体体积分数增加;当前段快冷速率为100℃/s时,铁素体相变开始温度下降幅度能达到100℃,铁素体体积分数增加近1倍。因此,应用前置式超快冷,并随后缓冷的冷却方式有助于提高铁素体转变量,并降低铁素体相变的温度,以细化铁素体晶粒。  相似文献   

6.
本文在40Cr 钢上研究了热变形奥氏体状态对珠光体转变运力学的影响,所得结论如下:1)在本文的试验条件下,高温形变有促使珠光体转变的作用;2)奥氏体状态必然对以后的相变动力学及相变产物的组织与性能有显著影响,研究形变对钢的相变以及相变后的组织与性能的影响,必须明确相变前奥氏体所处的状态,即加工硬化状态或再结晶状态等等;3)于再结晶状态下,形变对珠光体转变的促进作用,是再结晶细化晶粒作用的反映。晶粒愈细小,单位体积内的晶界面积愈大,从而使相变的核心数目增多,导致转变速度的加快。  相似文献   

7.
本文研究了16Mn 钢奥氏体动态再结晶、晶粒大小、晶粒细化率及γ→α相变后铁素体晶粒大小与工艺参数:变形量ε,变形温度之间的关系。通过大量数据的回归处理,得到奥氏体晶粒细化率在一定温度条件下,与变形量ε之间满足指数函数关系:动态再结晶完成后,奥氏体晶粒平均直径与形变速率温度修正系数 z 之间符合线性关系:γ→α相变后铁素体晶粒大小在一定温度条件下与变形量之间也存在指数函数关系:  相似文献   

8.
采用温轧加等温热处理工艺制备纳米贝氏体钢,研究了形变温度对纳米贝氏体相变速率的影响。结果表明,形变过冷奥氏体在503 K的贝氏体等温转变时间由常规等温淬火的50 h缩短至20 h,纳米贝氏体钢的抗拉强度为2127 MPa、延伸率为4%。在实验温度范围内进行的过冷奥氏体形变均能促进纳米贝氏体相变,相变速率随着形变温度的降低而提高。过冷奥氏体形变量大于30%后残余奥氏体组织明显细化,块状残余奥氏体全部转变为薄膜状。温轧工艺可在不恶化其它力学性能的前提下加速低温贝氏体相变,从而缩短热处理时间使生产成本降低。  相似文献   

9.
奥氏体变形会影响合金钢中的相变和组织,奥氏体变形时的应力-应变影响因素比较复杂,涉及变形温度、应变速率甚至应变诱导相变的影响。本文以0.38C-1.44Si-0.82Mn-0.9Cr-0.25Mo-0.078V钢为对象,在Gleeble3500试验机上进行热模拟压缩变形实验,研究了不同变形温度下应力-应变的变化规律以及变形压缩样品的显微组织。结果表明,随着变形温度增加,应力逐渐降低,当变形温度为400℃时,因过冷奥氏体变形会诱发相变,产生了束状组织,导致应力随应变急剧增加,相较于其它较高温度的变形,呈现更大的加工硬化现象;此外,通过添加拟合参数对现有Medina模型和Eres-Castellanos模型进行拟合修正,使用修正后的模型计算本实验钢的屈服强度,结果表明其预测屈服强度与实际屈服强度基本吻合,建立了本实验钢奥氏体屈服强度预测模型,可以为其奥氏体变形工艺提供指导。  相似文献   

10.
通过热模拟实验,考察了在不同变形温度和不同奥氏体晶粒尺寸等条件下保温对低碳钢形变后组织演变的影响。结果表明,在较低温度下变形得到的铁素体在保温时更稳定,随温度升高,易发生铁素体向奥氏体的逆相变。细晶奥氏体转变后的铁素体在保温时长大缓慢,所得组织稳定,并且保温后的组织也更为均匀。  相似文献   

11.
In this paper, we present a new method for inserting several triangulated surfaces into an existing tetrahedral mesh generated by the meccano method. The result is a conformal mesh where each inserted surface is approximated by a set of faces of the final tetrahedral mesh. First, the tetrahedral mesh is refined around the inserted surfaces to capture their geometric features. Second, each immersed surface is approximated by a set of faces from the tetrahedral mesh. Third, following a novel approach, the nodes of the approximated surfaces are mapped to the corresponding immersed surface. Fourth, we untangle and smooth the mesh by optimizing a regularized shape distortion measure for tetrahedral elements in which we move all the nodes of the mesh, restricting the movement of the edge and surface nodes along the corresponding entity they belong to. The refining process allows approximating the immersed surface for any initial meccano tetrahedral mesh. Moreover, the proposed projection method avoids computational expensive geometric projections. Finally, the applied simultaneous untangling and smoothing process delivers a high‐quality mesh and ensures that the immersed surfaces are interpolated. Several examples are presented to assess the properties of the proposed method.  相似文献   

12.
13.
A flow calorimeter for enthalpy increment measurements on condensed gases is presented. A better knowledge of the properties of the liquefied natural gas is needed, and therefore a liquid loop has been designed for our flow calorimeter. The fluid loop in the calorimeter is designed in order to avoid the two-phase region, since two phases would give compositional disturbances in the measurements. The avoidance of the two-phase region is made possible by increasing the pressure of the test fluid after the measurement section, then heating the fluid at super-critical pressure past the critical point. Finally, the fluid is throttled to the low-pressure gas state at the inlet condition of the compressor that circulates the fluid. To perform the pressure increase, a new cryogenic pump has been designed. To evaluate the new equipment, measurements were taken on liquid ethane over the temperature range 146–256 K at pressure between 0.9 and 5.1 MPa.  相似文献   

14.
On November 30, 2007, the China Association for Standardization (CAS) held a press conference at Beijing Diaoyutai State Guest House. Leaders from the China Household Electric Appliance Research Institute, the China Household Electric Appliance Association, and the China Consumers' Association attended and made speeches.……  相似文献   

15.
Standards are the basis for production enterprises to organize production, ex-factory inspection, trade (delivery) and technical exchanges, product certification, quality arbitration and supervision.……  相似文献   

16.
In the present study a high‐boron high speed steel (HSS) roll material was designed. Many expensive alloy elements have been substituted by cheap boron alloy, and high‐boron high speed steel roll has been manufactured by centrifugal casting method. The microstructures, mechanical properties and wear resistance of centrifugal casting high‐boron high speed steel roll have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), and X‐ray diffraction (XRD) analysis, hardness test, impact test and wear test. The results indicated that the solidification microstructures of high‐boron high speed steel roll consisted of M2(B,C), (W,Mo)2(B,C), M3(B,C), M23(B,C)6 type borocarbides and martensite, a small amount of retained austenite. Borocarbides were continuously distributed over the grain boundary. After quenching from 1050 °C, local broken network appeared in partial borocarbides, and fine secondary borocarbide precipitated from the matrix. After tempering from 525 °C, the amount of precipitated borocarbide increased significantly. After heat treatment, the hardness of high‐boron high speed steel roll excelled 60 HRC, and its impact toughness excelled 8.0 J/cm2. The single groove steel rolling amount of high‐boron high speed steel rolls increases by 500% than that of bainite cast iron roll, when the rolls are used in K1 mill housing of bar mill.  相似文献   

17.
A four-ball tester was used to evaluate the anti-wear performance of three kinds of organomolybdemun compounds in the engine oils, i. e., molybdenum dialkyldithiophosphate (MoDDP), molybdenum dialkyldithiocarbamate ( MoDTC), and sulphur and phosphorus freeorganomolybdeum (Molybdate). The results indicate that a low concentration of MoDDP doesn' t improve the anti-wear properties of the commercial engine oils, but a high concentration of MoDDP can obviously improve the anti-wear properties and the load-carrying capacity of the engine oils. MoDTC doesn' t improve the antiwear properties of the engine oils, but worsens the anti-wear properties of the oils. Signifi can timprove ment of frictional and wear characteristics is obtained with Molybdate added in the commercial engine oils and the formulated oils.  相似文献   

18.
The definition of the thixotropy is a decrease in viscosity with time in shear and a subsequent recovery of viscosity after the shear deformation is removed.We ...  相似文献   

19.
Several researches have been reported about the characteristic of β-Ga2O3 nanowires which was synthesized on nickel oxide particle. But indeed, recent researches about synthesis of β-Ga2O3 nanowires on oxide-assisted transition metal are limited to nickel or cobalt oxide catalyst. In this work, Gallium oxide (β-Ga2O3 ) nanowires were synthesized by a simple thermal evaporation method from gallium powder in the range of 700 - 1000℃ using the iron, nickel, copper, cobalt and zinc oxide as a catalyst, respectively. The β-Ga2O3 nanowires with single crystalline without defects were successfully synthesized at the reaction temperature of 850, 900 and 950℃ in all the catalysts. But optimum experimental condition in synthesis of nanowires varied with the kind of catalyst. As increasing synthesis temperature,the morphology of gallium oxide nanowires changed from nanowires to nanorods, and its diameter increased. From these results, we could be proposed that the growth mechanism of β-Ga2O3 nanowires was changed with synthesis temperature of nanowires. Microstructure and morphology of Synthesized nanowire was characterized by HR-TEM, FE-SEM, EDX and XRD.  相似文献   

20.
Cubic boron nitride(c-BN) film was deposited on a Si (100) substrate by the RF-magnetron sputtering.The mainly problems for fabrication of c-BN films are the low purity and high intrinsic compressive stress. In order to solve the two problems, the c-BN film with the buffer interlayer was deposited on the substrate which had been implanted with nitrogen and/or boron ions. The results show: the implantation of nitrogen ions can obviously increase c-BN content and reduce the internal stress slightly; while the implantation of boron shows no obvious improvement to the content of c-BN, which can reduce the internal stress in the film obviously. In addition, it is suggested that the implantation of nitrogen and boron shows the best result, which not only can increase the content of c-BN, but also reduce the internal stress in the c-BN film obviously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号