首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Severe plastic deformation improves the strength of a metal by strain hardening. Of the various severe plastic deformation processes, equal channel angular pressing proves to be the right candidate for bulk metal processing. Extensive works were carried out on equal channel angular pressing with channel angle ranging from 90° to 120 ° with or without back pressure on the exit channel. Numerical analyses suggest that reducing the channel angle below 90° would enhance the magnitude of strain imparted and, with prediction of a lesser strain homogeneity in such cases. Hence an acute angled equal channel angular pressing die with a back‐pressure notch sunken into the roof of the exit channel was designed, fabricated and was used for processing pure aluminium. Various mechanical properties of the processed materials were tested and acute angle processing imparted superior tensile strength to the work pieces in a single pass that would require several passes in a conventional equal channel angular pressing die. Substantial improvement in grain refinement and torsional properties was identified.  相似文献   

2.
Abstract

AZ31 Mg alloy samples were processed by equal channel angular pressing (ECAP) at 220°C for four passes. An average grain size of ~1·9 μm with reasonable homogeneity was obtained. The ECAP process imparted large plastic shear strains and strong deformation textures to the material. Subsequent annealing of the equal channel angular pressed samples produced interesting mechanical behaviours. While yield strength increased and ductility decreased immediately after undergoing ECAP, annealing at temperatures <250°C restored ductility significantly at a small decrease in of yield strength. Annealing at temperatures >250°C reduced yield strength without additional improvement in ductility. It is believed that the combination of stress relief via dislocation elimination, refined microstructure and the retention of a strong ECAP texture at low annealing temperatures enhance ductility. High temperature annealing breaks down the ECAP texture resulting in no further improvement in ductility. The results show that the mechanical properties of the alloy can be positively influenced by annealing after ECAP to achieve a combination of strength and ductility.  相似文献   

3.
AZ31 magnesium alloy sheets were processed at 250 °C and 300 °C by groove pressing, a severe plastic deformation technique to achieve grain refinement. The influence of processing temperature on the evolution of microstructure, mechanical properties and corrosion behavior was studied. Groove pressing significantly reduced the grain size of the alloy from 46 μm to 6.5 μm at 250 °C processing temperature. With the higher processing temperature (300 °C), grain growth (11.4 μm) was observed for the alloy. Number of twins appeared in the groove pressed samples. Higher hardness and tensile strength were measured for the groove pressed samples processed at 250 °C without significant loss in the ductility as reflected from the % of elongation due to the grain refinement. Corrosion performance of the samples assessed by potentiodynamic polarization studies indicated increased corrosion resistance for both of the grove pressed samples. However, sample at 300 °C exhibited better corrosion resistance compared with the sample processed at 250 °C. This can be understood by considering the effect of higher processing temperature on reducing the crystal imperfections which alters the corrosion behavior.  相似文献   

4.
Bio-corrosion of a magnesium alloy with different processing histories   总被引:1,自引:0,他引:1  
H. Wang  Y. Estrin 《Materials Letters》2008,62(16):2476-2479
High rates of degradation in corrosive media represent the Achilles heel of Mg alloys, which hinders their applications in various areas, particularly in prosthetics. We present an investigation of the degradation behaviour of magnesium alloy AZ31 in Hank's solution that simulates bodily fluids. The degradation rate is shown to be significantly reduced by grain refinement produced by mechanical processing. In particular, hot rolling does lead to a desirable retardation of degradation, while subsequent equal channel angular pressing does not result in any further reduction of degradation rate.  相似文献   

5.
A new biodegradable magnesium–zinc–strontium (Mg–Zn–Sr) alloy was developed and studied for medical implant applications. This first study investigated the alloy processing (casting, rolling, and heat treatment), microstructures, mechanical properties, and degradation properties in simulated body fluid (SBF). Aging treatment of the ZSr41 alloy at 175 °C for 8 h improved the mechanical properties when compared to those of the as-cast alloy. Specifically, the aged ZSr41 alloy had an ultimate tensile strength of 270 MPa, Vickers hardness of 71.5 HV, and elongation at failure of 12.8%. The mechanical properties of the ZSr41 alloy were superior as compared with those of pure magnesium and met the requirements for load-bearing medical implants. Furthermore, the immersion of the ZSr41 alloy in SBF showed a degradation mode that progressed cyclically, alternating between pitting and localized corrosion. The steady-state average degradation rate of the aged ZSr41 alloy in SBF was 0.96 g/(m2·hr), while the pH of SBF immersion solution increased. The corrosion current density of the ZSr41 alloy in SBF solution was 0.41 mA/mm2, which was much lower than 1.67 mA/mm2 for pure Mg under the same conditions. In summary, compared to pure Mg, the mechanical properties of the new ZSr41 alloy improved while the degradation rate decreased due to the addition of Zn and Sr alloying elements and specific processing conditions. The superior mechanical properties and corrosion resistance of the new ZSr41 alloy make it a promising alloy for next-generation implant applications.  相似文献   

6.
The precipitation and the strength evolution during equal channel angular pressing performed at 180 °C in an Al–4.2wt% Mg–1.2wt%Cu alloy have been studied by room temperature compression tests and transmission electron microscopy. The age hardening behaviour of these AlMgCu alloys, in which the precipitation sequence involves the S-phase and its precursors, was investigated and revealed a yield strength peak after 8 days at 180 °C. The influence of the Severe Plastic Deformation on the microstructure and mechanical properties of under-aged and peak-aged samples are presented. Notably, in the under-aged sample, a gradual increase of the strength after each ECAP pass is obtained while, the peak-aged samples loose much of their strength during the first ECAP pass. TEM characterization of the microstructure before and after ECAP is presented and linked to the evolution of the mechanical properties.  相似文献   

7.
The objective of this work is to study the effect of grain refinement using equal channel angular pressing with parallel channels (ECAP-PC) on microstructure, mechanical properties, and electrical conductivity of an Al–Mg–Si alloy. The coarse grained (CG) material is subjected to ECAP-PC processing at 100 °C for 1, 2, and 6 passes. Mechanical behavior of the Al–Mg–Si alloy after ECAP-PC processing and its electrical conductivity are analyzed with respect to the microstructure developed during ECAP-PC processing. The effect of artificial aging (AA) on the microstructure, mechanical properties, and electrical conductivity of the ECAP-PC processed Al–Mg–Si alloy is investigated. It is shown that the microstructure developed during ECAP-PC processing affects the kinetics of the aging process that, in turn, affects the mechanical properties and electrical conductivity of the material. It is demonstrated that both mechanical properties and electrical conductivity of the Al–Mg–Si alloy can be simultaneously enhanced via intelligent microstructural design through optimization of the thermo-mechanical processing applied to this material.  相似文献   

8.
The equal channel angular pressing (ECAP) technique with and without back pressure (BP) was introduced in this paper to prepare biomedical AZ31 magnesium alloy, with the effect of pass number (from 1 to 4) on the corrosion properties as well as in vitro biocompatibility being investigated. The results indicated that ECAPed or BP-ECAPed AZ31 alloys exhibited similar corrosion rate to that of the as-extruded one, but the corrosion rate slightly increased after 1-2 passes ECAP or BP-ECAP and further decreased after 4-pass procedure. Additionally, severe local corrosion was observed for the 1-3 passes ECAPed or BP-ECAPed AZ31 alloy samples. Compared to the as-extruded AZ31 alloy, the samples after ECAP or BP-ECAP procedure showed much smaller sized corrosion pits on the surface after removing the corrosion product. The surface analysis after 20 days immersion in Hank's solution revealed that the composition of the corrosion product consisted of C, O, Mg, P, Ca whereas only weak signal of Mg(OH)2 could be detected beside the dominant α(Mg) peak by X-ray diffraction. The cytotoxicity results suggested that the multi-pass ECAPed or BP-ECAPed AZ31 alloy exhibited Grade I-II cytotoxicity according to ISO 10993-5: 1999.  相似文献   

9.
Abstract

A large scale billet with diameter of 58·5 mm of an as cast Al–Mg–Mn alloy was processed by equal channel angular pressing (ECAP) at 350°C up to six passes. A significant refinement of the grains was observed after six pressings to ~2 μm. And the selected area electron diffraction (SAED) pattern showed that almost all of the grains were separated by boundaries with high angles of misorientation. A banded substructure was not observed during the hot ECAP, and a reasonably equiaxed structure was obtained just after one single pressing. Both the strength and the elongation increased abruptly in a single passage through the die, but thereafter, the increase was more gradual and exhibited a saturation effect after the fourth pressing. The good combination of strength and ductility of the Al–Mg–Mn alloy attained by the hot ECAP appeared to be attractive properties for industrial applications. Moreover, hot ECAP could possibly be used as an alternative step to hot extrusion or hot rolling in industrial processing, to break down an initial coarse as cast structure in a quite large scale billet.  相似文献   

10.
It has been demonstrated that severe plastic deformation (SPD) can be used to consolidate particles of a wide range of sizes from nano to micro into fully dense bulk material with good mechanical properties. SPD consolidation allows processing to be conducted at much lower temperatures and is therefore suitable for particles with highly metastable structures such as nanocrystalline. It is especially useful in the fabrication of multiphase materials including metal matrix nanocomposites. In this investigation, SPD consolidation was applied to recycle Ti machining chips. In particular, the as-received chips were consolidated by equal channel angular pressing at temperatures between 400 and 600 °C with the application of a back pressure from 50 to 200 MPa. Fully dense bulk Ti with fine grain sizes was produced, possessing strength comparable or higher than that of commercially pure wrought Ti. It is concluded that SPD consolidation is a promising method for recycling and value-adding of Ti chips.  相似文献   

11.
《Materials Science & Technology》2013,29(11-12):1239-1245
Abstract

Severe plastic deformation provides a processing tool for introducing fine grain sizes into polycrystalline materials. This paper describes the principles of equal channel angular pressing (ECAP) in which a material is pressed through a die where two channels form an L shaped configuration. The process of ECAP imposes a severe strain on the sample but there is no concomitant change in the cross-sectional dimensions so that repetitive pressings may be undertaken to achieve very high total strains. Several factors influence the nature of the microstructures attained in ECAP including the processing route by which the sample is rotated between consecutive pressings, the angle subtended by the two channels within the die, and the speed and temperature associated with the pressing. These various factors are described for a series of experiments conducted on samples of pure aluminium.  相似文献   

12.
Incremental equal channel angular pressing (I‐ECAP) is used in this work to produce ultrafine‐grained (UFG) pure iron, aluminum alloy 5083, commercial purity titanium (grade 4), and magnesium alloy AZ31B. Pure iron is processed at room temperature, aluminum alloy at 200 °C, titanium at 320 °C, and magnesium alloy at 150 °C. Strength improvement, attributed to the grain refinement below 1 μm, is reported for all processed materials. The yield strength increase is the most apparent in pure iron, reaching almost 500 MPa after one pass of I‐ECAP, comparing to 180 MPa in the as‐forged conditions. UFG titanium, aluminum, and magnesium alloys obtained in this study reached yield stress of 800, 350, and 300 MPa, respectively, in each case exhibiting the yield strength increase by at least 30%, comparing to the alloys processed by conventional metal forming operations such as forging and rolling.  相似文献   

13.
在室温下采用等通道转角挤压(ECAP)对工业纯铝(CP-Al)圆棒料进行12道次挤压,通过光学显微镜(OM)、X射线衍射(XRD)、扫描电子显微镜(SEM)、单向拉伸与电化学测试研究了超细晶纯铝的微观组织、力学性能和耐腐蚀性能.结果表明,ECAP后纯铝试样晶粒细化,4道次和8道次后晶粒尺寸分别达到576、482 nm.同时,显微硬度和抗拉强度显著提高,由初始的26.8 HV、79.2 MPa分别增加到8道次的48.3 HV、146.4 MPa,而塑性有所降低,断裂伸长率由初始的22.1%降低到4道次的9.5%.在质量分数为3.5%NaCl溶液中进行了开路电位(OCP)、极化曲线(PD)及电化学阻抗谱(EIS)测试,并观察腐蚀形貌.研究表明,随着ECAP道次的增加,腐蚀电位正移(-0.965~-0.860 V)、电荷传递电阻增大(1.741×10~4~4.798×10~4Ω·cm~2)、点蚀电位正移(-0.818~-0.734 V)、腐蚀电流密度降低(12.910~3.288μA/cm2),且腐蚀形貌有所改善,表明其耐腐蚀性能提高.这是由于随着挤压道次的增加,晶粒细化,加速了表面钝化膜的形成,形成的钝化膜更为致密,从而降低了腐蚀速率.  相似文献   

14.
In current paper, influence of tris-hydroxymethyl-aminomethane (tris) in simulated body fluid (SBF) on degradation behavior of pure magnesium is investigated using electrochemical tests as well as degradation measurement. Our results shows that tris mainly affects earlier degradation behavior of pure magnesium alloy. Tris and HCl used in preparation of SBF will form Tris–HCl which only lowers corrosion potential of magnesium slightly but accelerates degradation rates of pure magnesium by teens times. Consumption of OH? generated during magnesium dissolution by Tris–HCl progressively promotes transformation from Mg to Mg2+, which is the main reason for quite high degradation rate of pure magnesium in SBF. Pure magnesium is also more sensitive to pitting corrosion due to inclusion of Tris–HCl in SBF. This study deepens the understanding on degradation mechanism of biomedical magnesium alloys.  相似文献   

15.
Abstract

The present study investigated in detail the effect of texture evolution on the mechanical properties of an Al–5·7 wt-%Ni eutectic alloy, which was subjected to severe plastic deformation by the equal channel angular pressing (ECAP) technique. The ECAP procedure was carried out using two strain introduction methods, route BC and route A, at a temperature of 298 K and a pressing rate of 0·33 mm s?1. The as pressed microstructures were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results indicated that the Al–Ni eutectic alloy specimens after ECAP processing by route BC and route A methods had very different microstructures, which strongly affected the tensile properties of the specimens. It was demonstrated that after ECAP processing by route BC, fine Al3Ni particles of ~300 nm were homogeneously dispersed in the aluminium matrix, and the specimens showed no clear anisotropy in tensile properties. After ECAP processing by route A, however, eutectic textures containing α-Al and Al3Ni fibrous dispersoids had a highly anisotropic distribution and were demonstrated to have significantly anisotropic tensile properties. Based on the experimental results, the fracture mechanism during tensile testing of the Al–Ni eutectic alloy using different strain induction methods is discussed.  相似文献   

16.
The microstructure, mechanical properties, fatigue life and fatigue crack propagation rate of Mg‐8Al‐0.5Zn‐0.3Mn (AZ80) magnesium alloy were investigated after extrusion and equal channel angular pressing (ECAP). The highest ultimate and yield strengths and a large enhancement in the fatigue lifetime were obtained after two passes of ECAP. These were decreased with further pressing, although the grain size became finer. There was a correlation between the fatigue and ultimate strengths of AZ80 alloy. The transition from twinning to dislocation slip has also occurred at an average grain size of 7.9 μm. Simultaneous influences of the grain size and the yield strength caused an almost the same threshold of the stress intensity ratio for different process conditions. Moreover, the enhanced ductility of the ECAPed alloy resulted in an increase in the crack growth resistance because of its better ability to accommodate plastic strains during cycling.  相似文献   

17.
Mn and Zn were selected to develop a Mg–Zn–Mn magnesium alloy for biomedical application due to the good biocompatibility of Zn and Mn elements. Microstructure, mechanical properties, corrosion properties and biocompatibility of the Mg–Zn–Mn alloys have been investigated by use of optical microscope, scanning electron microscope, tensile testing, and blood hemolysis and cell toxicity. Microstructure observation has shown that the addition of Zn and the extrusion significantly refined the grain size of both the as-cast and the extruded magnesium alloys, which mainly contributes to the high tensile strength and good elongation. Polarization test has shown Zn could accelerate the formation of a passivation film, which provides good protection to the magnesium alloy against simulate body fluid. Cell culture and hemolysis tests have shown that the magnesium alloy did not have cell toxicity, showing good cytocompatibility, but the alloy caused hemolysis to blood system. It was suggested that surface modification have to be adopted to improve the blood compatibility of the magnesium alloy for the application in blood environment.  相似文献   

18.
Abstract

The development of new wrought magnesium alloys for automotive industry has increased in recent years owing to their high potential as structural materials for low density and high strength/weight ratio demands. However, the poor mechanical properties and low corrosion resistance of the magnesium alloys have led to searching a new kind of magnesium alloys for better strength, ductility and high corrosion resistance. The main objective of the present research is to investigate the mechanical properties and the corrosion behaviour of new magnesium alloys, Mg–Zn–Ag (ZQ) and Mg–Zn–Si–Ca (ZS) alloys. The ZQ6X and ZS6X–YCa alloys were prepared by using hot extrusion method. Hardness AC and DC polarisation tests were carried out on the extruded rods, which contain different amounts of silver or silicon and calcium. The potential difference in air between different phases and the matrix was examined using scanning Kelvin probe force microscopy. The microstructure was examined using optical and electron microscopy (TEM and SEM), X-ray analysis and EDS. The results showed that the silver addition improved the mechanical properties but decreased the corrosion resistance. The addition of silicon and calcium also affected both mechanical properties and corrosion behaviour. These results can be explained by the effects of alloying elements on microstructure of Mg–Zn alloys such as grain size and precipitates caused by the change in precipitation and recrystallisation behaviour.  相似文献   

19.
There are few reports showing that severe plastic deformation of relatively high strength materials such as steels is difficult due to the segmented flow. In the present paper, it is shown that twining induced plasticity (TWIP) steel can be processed successfully by simple shear extrusion without segmentation. Two simple shear extrusion dies with the maximum distortion angle of 30° and 45° are considered. For comparison, TWIP steel is also processed by equal channel angular pressing at two strain rates. Results show that equal channel angular pressing leads to the segmented flow due to flow localization while simple shear extrusion has the capability of processing TWIP steel without cracking. The microstructure after one pass of simple shear extrusion consists of many deformation twins due to imposing large plastic strains into the material.  相似文献   

20.
等通道挤压AZ80镁合金的析出行为和性能   总被引:3,自引:0,他引:3  
研究了AZ80镁合金经300℃等通道挤压(ECAP)后的组织、织构与力学性能的演变规律以及第二相析出行为的影响。结果表明:ECAP显著促进了粒状连续析出,可有效节省后续热处理时间。A路径多道次挤压最终获得基面织构;Bc路径挤压后形成基面近似平行于剪切面的织构;第二相析出对ECAP织构特征的形成没有显著影响。用该工艺可获得较高的延伸率(13%-19%),但是抗拉强度过低(300 MPa),综合机械性能不理想。可通过抑制挤压前的未溶粗大粒子的析出、减少挤压道次和降低挤压温度等措施优化AZ80的析出控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号