首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 183 毫秒
1.
利用水热法制备了纳米ZnO颗粒,同时采用聚噻吩对其原位改性,利用X射线粉末衍射仪、扫描电镜和红外光谱对所制ZnO复合材料的结构和形貌进行表征分析。将合成的改性ZnO纳米颗粒用于传感材料,研究了其在检测挥发性有机物中的气敏性能。结果表明:聚噻吩掺杂纳米ZnO有利于复合材料气敏性能的提高,添加量不同对丙二醇的选择性和响应有明显影响,当掺杂量为10%(质量分数)时,对5×10-6的丙二醇的响应达到14。说明聚噻吩改性的纳米ZnO是可以有效检测丙二醇的气敏性材料。  相似文献   

2.
纳米ZnO气敏传感器研究进展   总被引:2,自引:2,他引:0       下载免费PDF全文
半导体金属氧化物气敏传感器被广泛应用于有毒性气体、可燃性气体等的检测.ZnO是一种重要的半导体气敏材料,特别是纳米ZnO,由于其粒子尺寸小,比表面积大,成为被广泛研究的气敏响应材料之一.简要介绍了纳米ZnO气敏传感器的气敏机理、主要特性,综述了通过新型纳米形貌、结构制备以及元素掺杂改性提升纳米ZnO气敏性能等方面的研究进展,并进一步指出了纳米ZnO气敏传感器研究中存在的问题和未来的研究方向.  相似文献   

3.
采用物理热蒸发法制备ZnO纳米材料及不同质量分数(1%,3%,5%,wt,下同)Ag掺杂的ZnO纳米材料,制备成旁热式气敏元件,采用静态配气法对目标气体进行气敏性能测试。实验结果表明,Ag掺杂ZnO纳米材料较纯ZnO纳米材料对目标气体(酒精、甲烷、一氧化碳)的气敏性能有所提高。其中,Ag掺杂质量分数为1%的ZnO纳米材料气敏性能最佳,提高幅度分别达215%,128%和76%(C2H5OH,CH4,CO)。借助X射线衍射仪和扫描电子显微镜对所制得不同比例Ag掺杂的ZnO纳米结构进行表征,并对实验结果进行气敏性能分析,结合势垒模型和能带理论进行气敏机理分析。  相似文献   

4.
于灵敏  范新会  岳苗  祁立军  严文 《功能材料》2011,42(1):136-138,143
以不同金属掺杂的ZnO纳米线为气敏材料,在350℃下对不同浓度的H2气体进行了气敏性能测试.结果表明,掺杂Ag的ZnO纳米线在H2浓度为2.52×10(-3)时具有较高的气体灵敏度28.549.同时,利用Origin软件对测得的气敏性能曲线进行线性拟合,对未知的H2浓度进行了有效判定.还对金属掺杂提高ZnO纳米线气敏性...  相似文献   

5.
以采用物理热蒸发法制备的纯ZnO纳米线和掺杂Ni、Al的ZnO纳米线为气敏基料,以蒸馏水调和制备成旁热式气敏元件,用静态配气法对一系列浓度的一氧化碳气体进行了气敏性能的测试。结果表明掺杂的纳米ZnO元件与纯的纳米ZnO元件相比对CO气体的灵敏度更高,三种元件的灵敏度与所测气体浓度均呈现先上升后下降的变化趋势,且在同一浓度下出现最高值。  相似文献   

6.
掺杂Al2O3纳米粉对ZnO厚膜气敏传感器性能的影响   总被引:2,自引:0,他引:2  
以ZnO纳米粉(平均粒径30 nm)和Al2O3纳米粉(平均粒径5 nm)为原料,利用传统的厚膜气敏传感器制备工艺制备了纯ZnO厚膜气敏传感器和掺杂Al2O3(掺杂量为2wt%和5wt%)的ZnO厚膜气敏传感器.对这三种厚膜传感器的本征电阻及对乙醇蒸汽的敏感特性进行了测试.结果表明:掺杂少量Al2O3纳米粉可明显降低ZnO气敏传感器的本征电阻,改善传感器的烧结性能,同时还可降低其最佳工作温度,提高器件对乙醇的灵敏度.结合厚膜气敏传感器的显微结构分析结果,对出现上述差异的原因进行了讨论.  相似文献   

7.
以采用物理热蒸发法制备的纯ZnO纳米线和Ni掺杂ZnO纳米线为气敏基料,制备成旁热式气敏元件,用静态配气法对浓度为10^-4的甲烷气体进行了气敏性能的测试.结果表明Ni掺杂使ZnO纳米线对甲烷灵敏度提高了182%,响应时间和恢复时间分别缩短了3和2s.Ni的掺杂,在ZnO半导体禁带中引入新的复合中心,形成附加能级,提高了ZnO纳米线对甲烷的灵敏度.  相似文献   

8.
Ag掺杂对ZnO纳米线气敏性能的影响   总被引:1,自引:0,他引:1  
以采用物理热蒸发法制备的纯ZnO纳米线和Ag掺杂ZnO纳米线为气敏基料,制备成旁热式气敏元件,用静态配气法对浓度均为100ppm的无水乙醇蒸汽、氨气、甲烷及一氧化碳四种气体进行气敏性能测试,结果表明,Ag掺杂后,ZnO纳米线对四种气体灵敏度的最高值分别提高了230%,92%,158%,49%,缩短了响应时间和恢复时间。  相似文献   

9.
纳米ZnO气敏元件对H2的测定研究   总被引:1,自引:0,他引:1  
以采用物理热蒸发法制备的纯ZnO纳米线以及Ag掺杂ZnO纳米线为气敏基料制备成旁热式气敏元件,用静态配气法对不同浓度的H2进行气敏性能测试。利用测试结果,绘制元件灵敏度与所测气体浓度的关系曲线,并对此曲线进行了线性拟合。结果表明,Ag掺杂纳米ZnO元件与纯纳米ZnO元件相比会明显提高对H2的灵敏度,两类元件的气敏性能与所测气体浓度呈现相同的变化规律。用拟合方程计算出的气体浓度值与实际检测值间吻合较好,误差小于10%。因此,可以利用这两类元件及其拟合直线对H2气体浓度进行测定。  相似文献   

10.
溶剂热法制备铝掺杂纳米ZnO及其气敏性能   总被引:1,自引:0,他引:1  
采用溶剂热法合成了铝掺杂的纳米ZnO气敏材料,运用XRD和BET等手段对产物进行了表征并进行了相应的气敏性能测试.结果表明,掺杂1.5%Al后的ZnO比表面最大,粒径最小;材料对乙醛、90#汽油、90#乙醇汽油、硫化氢、二氧化氮响应较高.掺杂量为1.5%Al的元件对90#汽油在浓度为50ppm时灵敏度接近120.  相似文献   

11.
A simple and cost-effective spray pyrolysis technique was employed to synthesize silver-doped zinc oxide (Ag–ZnO) thin films on the glass substrates from aqueous solutions of zinc acetate and silver nitrate precursors at 450 °C. The effects of Ag doping on structural, morphological, and gas-sensing properties of films were examined. The X-ray diffraction spectra of the Ag–ZnO films showed the polycrystalline nature having hexagonal crystal structure. Scanning electron microscopy (SEM) images of the pure ZnO films revealed the uniform distribution of the spherical grains (~80 nm size). Tiny Ag nanoparticles are clearly visualized in the SEM of Ag–ZnO films. The investigation of the effect of Ag doping on the gas-sensing properties of the Ag–ZnO revealed that the 15 % Ag-doped ZnO sample has the highest gas sensitivity (85 %) and excessive Ag doping in ZnO degraded the gas sensitivity. A possible mechanism of Ag–ZnO-based sensor sensitivity to the target gas is also proposed.  相似文献   

12.
用共沉淀的方法,制备了纤锌矿结构的ZnO及其掺Sb的ZnO纳米粉.X射线衍射(XRD)分析表明,当锑掺量小于5wt%时没有新相生成.纯ZnO和掺Sb的ZnO器件的气敏和电阻测试结果发现:不同的厚膜烧结工艺对气体的敏感性影响较大,并且掺Sb后ZnO的气敏性能有所提高,电导峰消失.从缺陷角度、XPS分析的结果进行了讨论,初步解释了锑的掺入导致电导变化和气敏性能提高的原因.  相似文献   

13.
以ZIF-8及La掺杂ZIF-8为前驱体,经高温煅烧制备ZnO及La掺杂ZnO纳米颗粒.研究了La掺杂对ZnO纳米颗粒的形貌、晶体结构及气敏性能的影响.利用X射线衍射仪、扫描电子显微镜对材料的微结构进行表征,结果表明:La掺杂有利于获得更小粒径的类球形纳米结构,但La掺杂未改变ZIF-8及衍生ZnO纳米结构的晶体结构....  相似文献   

14.
TiO2 semiconductor nanobelts have unique structural and functional properties, which lead to great potential in many fields, including photovoltaics, photocatalysis, energy storage, gas sensors, biosensors, and even biomaterials. A review of synthetic methods, properties, surface modification, and applications of TiO2 nanobelts is presented here. The structural features and basic properties of TiO2 nanobelts are systematically discussed, with the many applications of TiO2 nanobelts in the fields of photocatalysis, solar cells, gas sensors, biosensors, and lithium‐ion batteries then introduced. Research efforts that aim to overcome the intrinsic drawbacks of TiO2 nanobelts are also highlighted. These efforts are focused on the rational design and modification of TiO2 nanobelts by doping with heteroatoms and/or forming surface heterostructures, to improve their desirable properties. Subsequently, the various types of surface heterostructures obtained by coupling TiO2 nanobelts with metal and metal oxide nanoparticles, chalcogenides, and conducting polymers are described. Further, the charge separation and electron transfer at the interfaces of these heterostructures are also discussed. These properties are related to improved sensitivity and selectivity for specific gases and biomolecules, as well as enhanced UV and visible light photocatalytic properties. The progress in developments of near‐infrared‐active photocatalysts based on TiO2 nanobelts is also highlighted. Finally, an outline of important directions of future research into the synthesis, modification, and applications of this unique material is given.  相似文献   

15.
Sensitivity-customization of zinc oxide (ZnO) nanowire (NW) gas sensors has been demonstrated by controlling Ga-doping, thereby tuning the resistance of the NWs. Both un-doped and 5 weight% Ga-doped ZnO (GZO) NWs are synthesized for the highly sensitive sensing within a narrow detection window and a less sensitive one within an expanded window, respectively. We have employed hot-walled pulsed laser deposition (HW-PLD) for the NW synthesis. With CO gas injection, the resistance reduction of NWs is detected and analyzed in a self-designed gas chamber that guarantees the precise control of gas flow and, gas concentration, as well as temperature. NW sensitivity is proportional to the sensing temperature and inversely proportional to the doping concentration resulting in widening the sensing window up to 230 times by the 5 wt.% Ga-doping.  相似文献   

16.
鲍艳  王程 《材料导报》2015,29(11):1-8
中空ZnO微球具有密度低、比表面积大、渗透性好、光电性能优异等特点,受到科研工作者的广泛关注。综述了中空ZnO微球的制备方法及其应用领域,首先,主要阐述了硬模板法、软模板法、自模板法和无模板法4大类制备方法的研究进展,其次,介绍了中空ZnO微球在光催化、太阳能电池、气体传感器及生物医药等领域的应用进展,最后,对中空ZnO结构材料的发展前景进行了展望。  相似文献   

17.
Pure and 5 % Fe-doped ZnO thin films (TFs) have been successfully deposited on Al2O3 substrate from pre-doped target material by RF magnetron sputtering technique. X-ray diffraction (XRD) patterns confirm the formation of both films in single phase wurtzite structure without any extra impurity peak. The calculated average crystallite sizes are found to be 22 and 17 nm for pure and Fe-doped ZnO TFs, respectively. The broadening in XRD peaks of Fe-doped ZnO TF occurs due to decrease in crystallite size and increase in lattice strain. Field emission scanning electron microscopy images exhibit that the particles growth in Fe-doped ZnO TF is more uniform and smaller than pure ZnO. Energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy results confirm the existence of Fe dopants into ZnO matrix. The doping effect enhances the sensitivity of ZnO sensor almost three times for ethanol gas sensing, the improvement in the response time and recovery time is noticeable as the size reduction effect increases the surface to volume ratio, and resulting more numbers of ethanol gas molecules are adsorbed to produce a higher concentration of oxygen ions which leads a larger deviation in capacitance.  相似文献   

18.
以醋酸锌(Zn(CH3COO)2·2H2O)为锌源、硝酸银(AgNO3)为掺杂源、纤维素纳米晶体(Cellulose nanocrystal, CNC)为生物模板,通过溶胶-凝胶法结合碳化处理,制备了Ag-ZnO/生物质炭(Biochar)复合材料。采用TEM、XRD、BET、UV-Vis DRS对所制得的Ag-ZnO/Biochar复合材料进行表征。以亚甲基蓝(MB)为模型污染物,评价Ag-ZnO/Biochar复合材料在可见光源照射下的光催化性能,进一步阐明其光催化机制。结果表明:碳化后纳米ZnO仍保持良好的分散性,球形Ag纳米粒子均匀分散在ZnO表面,形成Ag-ZnO/Biochar三元复合材料。与Ag-ZnO和ZnO/Biochar复合材料相比,Ag-ZnO/Biochar复合材料在可见光下的光催化降解率显著提高。这是由于生物质炭赋予复合体系良好的吸附性能,使MB的光催化降解反应持续发生;而Ag纳米粒子的表面等离子体共振(Surface plasmon resonance, SRP)效应则增强了复合体系在可见光区的吸收。其中,当AgNO3、CNC、Zn(CH3COO)2·2H2O的质量比为0.01:0.25:1时,制得的Ag-ZnO/Biochar复合材料在可见光下具有最佳的光吸收性能和MB降解效率:室温条件下,黑暗中吸附30 min,再用可见光照射120 min,即可达到99%的MB降解率,显著高于Ag-ZnO(约23%)和ZnO/Biochar复合材料(约64%)。   相似文献   

19.
Zinc oxide (ZnO) is a thermally stable n-type semiconducting material. ZnO 2D nanosheets have mainly gained substantial attention due to their unique properties, such as direct bandgap and strong excitonic binding energy at room temperature. These are widely utilized in piezotronics, energy storage, photodetectors, light-emitting diodes, solar cells, gas sensors, and photocatalysis. Notably, the chemical properties and performances of ZnO nanosheets largely depend on the nano-structuring that can be regulated and controlled through modulating synthetic strategies. Two synthetic approaches, top–down and bottom–up, are mainly employed for preparing ZnO 2D nanomaterials. However, owing to better results in producing defect-free nanostructures, homogenous chemical composition, etc., the bottom–up approach is extensively used compared to the top–down method for preparing ZnO 2D nanosheets. This review presents a comprehensive study on designing and developing 2D ZnO nanomaterials, followed by accenting its potential applications. To begin with, various synthetic strategies and attributes of ZnO 2D nanosheets are discussed, followed by focusing on methodologies and reaction mechanisms. Then, their deliberation toward batteries, supercapacitors, electronics/optoelectronics, photocatalysis, sensing, and piezoelectronic platforms are further discussed. Finally, the challenges and future opportunities are featured based on its current development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号