首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the performance of the solar-driven ejector refrigeration system with iso-butane (R600a) as the refrigerant is studied. The effects that both the operating conditions and the solar collector types have on the system's performance are also examined by dynamic simulation. The TRNSYS and EES simulation tools are used to model and analyze the performance of a solar-driven ejector refrigeration system. The whole system is modelled under the TRNSYS environment, but the model of the ejector refrigeration subsystem is developed in the Engineering Equations Solver (EES) program. A solar fraction of 75% is obtained when using the evacuated tube solar collector. In the very hot environment, the system requires relatively high generator temperature, thus a flat plate solar collector is not economically competitive because the high amount of auxiliary heat needed to boost up the generator temperature. The results from the simulation indicate that an efficient ejector system can only work in a region with decent solar radiation and where a sufficiently low condenser temperature can be kept. The average yearly system thermal ratio (STR) is about 0.22, the COP of the cooling subsystem is about 0.48, and the solar collector efficiency is about 0.47 at Te 15 °C, Tc 5 °C above the ambient temperature, evacuated collector area 50 m2 and hot storage tank volume 2 m3.  相似文献   

2.
In this paper the experimental results of a lab-scale chilling module working with the composite sorbent SWS-1L (mesoporous silica gel impregnated with CaCl2) are presented. The interesting sorption properties of this material yield a high COP=0.6 that gives a promising alternative to the common zeolite or silica gel for application in solid sorption units driven by low temperature heat (T 100 °C). The measured low specific power of the device is a result of not optimised geometry of the adsorber and of the pelletised shape of the adsorbent. Heat transfer optimisation is currently under progress to increase the specific power. The experimental results are compared with those of a mathematic model able to describe the dynamic behaviour of the system. The model is used to study the influence of the main operating parameters on the system performance.  相似文献   

3.
The present study is aimed to investigate the oscillation effects on the frost formation and the liquid droplet solidification on a cold plate in atmospheric air flow. A microscopic image system is used to observe the structure of the frost layer, and an electrodynamic shaker is designed to oscillate the cold plate at various amplitudes (D) and frequencies (f). The physical parameters considered in this study include the velocity, temperature, and relative humidity of the air (V, Ta, and φ), as well as the surface temperature of the cold plate (Tw), which is varied by adjusting the cooling refrigerant temperature (Tref). The ranges of the physical variables considered in this study are: 2V8 m/s, 18Ta30 °C, 40%φ70%, −18Tref (and Tw)0 °C, 40D100 μm, and 100f200 Hz.  相似文献   

4.
The theoretical performances of some 250 potential work fluids in vapour compression heat pumps condensing at 150°C and evaporating at 100°C have been predicted, using expression for coefficient of performance (COP) and minimum superheat that involve only easily accessible physical properties. Expected correlations were found between COP and critical temperature, between specific compressor displacement and normal boiling point, Tbp, and between condensing pressure and Tbp. Correlations were also found between minimum superheat and both molecular weight and critical pressure. From these correlations, the desirable basic properties of a high temperature heat pump fluid are deduced. The principle of corresponding states is invoked to explain the connection between minimum superheat and critical pressure, and hence the reason why perfluorinated compounds tend to make poor work fluids.  相似文献   

5.
A theoretical study of a novel regenerative ejector refrigeration cycle   总被引:1,自引:0,他引:1  
There has been a demand for developments of the ejector refrigeration systems using low grade thermal energy, such as solar energy and waste heat. In this paper, a novel regenerative ejector refrigeration cycle was described, which uses an auxiliary jet pump and a conventional regenerator to enhance the performance of the novel cycle. The theoretical analysis on the performance characteristics was carried out for the novel cycle with the refrigerant R141b. Compared with the conventional cycle, the simulation results show that the coefficient of performance (COP) of the novel cycle increases, respectively, by from 9.3 to 12.1% when generating temperature is in a range of 80–160 °C, the condensing temperature is in a range of 35–45 °C and the evaporating temperature is fixed at 10 °C. Especially due to the enhanced regeneration with increasing the pump outlet pressure, the improvement of COP of the novel cycle is approached to 17.8% compared with that in the conventional cycle under the operating condition that generating temperature is 100 °C, condensing temperature is 40 °C and evaporating temperature is 10 °C. Therefore, the characteristics of the novel cycle performance show its promise in using low grade thermal energy for the ejector refrigeration system.  相似文献   

6.
Adsorption performances and thermal conductivity were tested for three types of adsorbent: Pure CaCl2 powder, simple composite adsorbent and consolidated composite adsorbent. The simple composite adsorbents show better adsorption performance because the additive of expanded graphite in CaCl2 powder has restrained the agglomeration phenomenon in adsorption process and improved the adsorption performance of CaCl2. The consolidated composite adsorbent are suitable to be used as adsorbent for ice maker on fishing boats because they have higher thermal conductivity, larger volumetric cooling capacity, higher SCP values and better anti-sway performance than simple composite adsorbents. Thermal conductivity of the consolidated composite adsorbent is 6.5–9.8 W m−1 K−1 depending on the molding pressure, ranging from 5 to 15 MPa, which is about 32 times higher than the thermal conductivity of CaCl2 powder. The volumetric cooling capacity of consolidated composite adsorbent is about 52% higher than the best result obtained for CaCl2 at the evaporating temperature of −10 °C. The SCP of the consolidated adsorbent increases of about 353% than CaCl2 powder from simulation results at Tad=30 °C and Tev=−10 °C. The consolidated composite adsorbents have good anti-sway performance and they are not easy to be scattered out when the fishing boats sway on the sea.  相似文献   

7.
Whenever the fractional temperature lift ΔT/Tc of a heat pump is 0.15, simple cycles with one-stage throttling exhibit unsatisfactory energy performance. The adoption of multi-stage throttling, both in non-regenerative and regenerative cycles, is the most direct way of improving the cycle coefficient of performance (COP). The performance of these complex cycles is found to be a function of the molecular complexity of the working fluid, the reduced evaporation temperature, the fractional temperature lift and the number of stages of throttling. Furthermore, complex cycles are shown to be equivalent to a combination of simple cycles and their performance may be directly inferred by this route. Such calculations show that for a given fractional temperature lift an optimum molecular complexity (between that of R12 and n-butane) exists. Fluids with simpler molecules exhibit excessive vapour superheating during compression, and those with more complex molecules have excessive throttling losses. Also, with complex cycles, regeneration should be applied only to the cycle at the lowest temperature in order to improve the cycle COP and to prevent condensation during compression. As a general trend, however, complex cycles suffer a significant loss in performance compared to optimized simple cycles due to the adverse area of the two-phase diagram in which they work.  相似文献   

8.
In the present study, two empirical correlations from the test results of 15 ejectors are derived for the performance prediction of ejectors using R141b as the working fluid. The ratio of the hypothetical throat area of the entrained flow to the nozzle throat area Ae/At, the geometric design parameter of the ejector A3/At, and the pressure ratios Pg/Pe and Pc*/Pe are used to correlate the performance of the ejector. The prediction of the entrainment ratio ω using the correlations is within ±10% error. A method of calculation for the ejector design using the correlations is also developed. R141b is shown in the present study to be a good working fluid for an ejector. The measured ω for the ejectors used in the present study can reach as high as 0.54 at Pg=0.465 MPa (84°C), Pc*=0.087 MPa (28°C) and Pe=0.040 MPa (8°C). For Pg=0.538 MPa (90°C), Pc*=0.101 MPa (32°C) and Pe=0.040 MPa (8°C), ω reaches 0.45.

Résumé

Dans cette étude, on a établi deux corrélations empiriques à partir des résultats expérimentaux obtenus utilisant 15 éjecteurs; ces corrélations ont été utilisées ensuite pour prédire la performance d'éjecteurs utilisant le R141b comme fluide frigorigène. Les rapports Ae/At (section de passage du fluide entraîné rapporté à la section théorique du col de l'éjecteur), et A3/At (section de sortie de l'éjecteur rapporté à la section théorique du col de l'éjecteur) et les relations entre pressions Pg/Pe et Pc*/Pe sont utilisés pour trouver la corrélation de la performance de l'éjecteur. La prévision du taux d'entraînement à partir des corrélations est précise à la hauteur de ±10%. Les auteurs ont également développé une méthode de calcul permettant de concevoir des éjecteurs à partir des corrélations. On a montré dans cette étude que le R141b s'avère être un fluide actif efficace pour cette utilisation. Le ω mesuré des éjecteurs utilisés dans cette étude peuvent atteindre 0.54 à Pg=0.465 MPa (84°C), Pc*=0.087 MPa (28°C) et Pe=0.040 MPa (8°C). Pour Pg=0.538 MPa (90°C), Pc*=0.101 MPa (32°C) et Pe=0.040 MPa (8°C), ω atteint 0.45.  相似文献   

9.
In order to settle the problem of the corrosion between sea water and the steel adsorber for ammonia system, a split heat pipe type adsorption ice making test unit, which use compound adsorbent of CaCl2 and activated carbon to improve the adsorption performance, is designed and constructed. For this test unit there is mass recovery function between two beds and the CaCl2 in compound adsorbent per bed is 1.88 kg, and there is only one pump for the whole heating and cooling phase for adsorbers. Performances of this system are tested; the lowest evaporating temperature is as low as −42 °C. At the evaporating temperature of −35 and −25 °C, the cooling powers are 0.89 and 1.18 kW, respectively. At the evaporating temperature of −15 °C, its average cooling power is 1.37 kW, which corresponds coefficient of performance of refrigeration COP=0.41 and specific cooling power per kilogram CaCl2 of each adsorber SCP=731 W kg−1. The mass recovery process has improved SCP and COP for the system by 15.5 and 24.1%, respectively. Heat transfer performance is also improved by the split heat pipe construction; the average heat transfer coefficient for a whole cycle is 155.8 W m−2 °C−1.  相似文献   

10.
The performance of a solid sorption icemaker is investigated. CaCl2/activated carbon was used as compound adsorbent and ammonia was employed as adsorbate. The influence of operating conditions (cooling water temperature, mass recovery and heat pipe heat recovery, etc.) on the mass of ice, SCP (specific cooling power) and COP (coefficient of performance) was experimentally assessed. At the desorption temperature of 126 °C, cooling water temperature of 22 °C, ice produced temperature of −7.5 °C, 40 s of mass recovery and 2 min of heat pipe heat recovery, the mass of ice, SCP and COP values are 17.6 kg/h, 369.1 W/kg and 0.2, respectively.  相似文献   

11.
A combined-cycle refrigeration system (CCRS) that comprises a conventional refrigeration and air-conditioning system using mechanical compressor (RAC/MC) and an ejector-cooling cycle (EJC) is proposed and studied. The EJC is driven by the waste heat from the RAC/MC and acts as the bottom cycle of the RAC/MC. A system analysis shows that the COP of a CCRS is significantly higher than a single-stage refrigeration system. Improvement in COP can be as high as 18.4% for evaporating temperature of the RAC/MC Te at −5°C. A prototype of the CCRS was built and tested in the present study. Experimental results show that at Te=−4.5°C, COP is improved by 14% for a CCRS. For Te at 5°C, COP can be improved by 24% for a CCRS with higher condensing temperature of the RAC/MC. The present study shows that the CCRS using the ejector-cooling cycle as the bottom cycle of the RAC/MC is viable. Further improvement in COP is possible since the prototype is not designed and operated at an optimal condition.  相似文献   

12.
CO2 is environmentally friendly, safe and more suitable to ejector refrigeration cycle than to vapor compression cycle. Supersonic two-phase flow of CO2 in the diverging sections of rectangular converging–diverging nozzles was investigated. The divergence angles with significant variation of decompression were 0.076°, 0.153°, 0.306° and 0.612°. This paper presents experimental decompression phenomena which can be used in designing nozzles and an assessment of Isentropic Homogeneous Equilibrium (IHE). Inlet conditions around 6–9 MPa, 20–37 °C were used to resemble ejector nozzles of coolers and heat pumps. For inlet temperature around 37 °C, throat decompression boiling from the saturated liquid line, supersonic decompression and IHE solution were obtained for the two large divergence angles. For divergence angles larger than 0.306°, decompression curves for inlet temperature above 35 °C approached IHE curves. For divergence angles smaller than 0.306° or for nozzles with inlet temperature below 35 °C, IHE had no solution.  相似文献   

13.
Nanocrystallites of tricobalt tetraoxide (Co3O4) have been synthesized by sol–gel process using cobalt acetate tetrahydrate, oxalic acid as precursors and ethanol as a solvent. The process comprises of gel formation, drying at 80 °C for 24 h to obtain cobalt oxalate dihydrate (α-CoC2O4·2H2O) followed by calcination at or above 400 °C for 2 h in air. These results combined with thermal analysis have been used to determine the scheme of oxide formation. The room temperature optical absorption spectra exhibits blue shift in both (i) ligand to metal (p(O2−) → eg(Co3+), 3.12 eV), and (ii) metal to metal charge transfer transitions (a) t2g(Co3+) → t2(Co2+), 1.77 eV, (b) t2(Co2+) → eg(Co3+), 0.95 eV together with the d–d transitions (0.853 and 0.56 eV) within the Co2+ tetrahedra. The temperature dependent ac electrical and dielectric properties of these nanocrystals have been studied in the frequency range 100 Hz to 15 MHz. There are two regimes distinguishing different temperature dependences of the conductivity (70–100 K and 200–300 K). The ac conductivity in both the temperature regions is explained in terms of nearest neighbor hopping (NNH) mechanism of electrons. The carrier concentration measured from the capacitance (C)–voltage (V) measurements is found to be 1.05 × 1016 m−3. The temperature dependent dc magnetic susceptibility curves under zero field cooled (ZFC) and field cooled (FC) conditions exhibit irreversibilities whose blocking temperature (TB) is centered at 35 K. The observed Néel temperature (TN  25 K) is significantly lower than the bulk Co3O4 value (TN = 40 K) possibly due to the associate finite size effects.  相似文献   

14.
A novel experimental investigation of a solar cooling system in Madrid   总被引:5,自引:2,他引:3  
This paper reports novel experimental results derived through field testing of a part load solar energized cooling system for typical Spanish houses in Madrid during the summer period of 2003. Solar hot water was delivered by means of a 49.9 m2 array of flat-plate collectors to drive a single-effect (LiBr/H2O) absorption chiller of 35 kW nominal cooling capacity. Thermal energy was stored in a 2 m3 stratified hot water storage tank during hours of bright sunshine. Chilled water produced at the evaporator was supplied to a row of fan coil units and the heat of condensation and absorption was rejected by means of a forced draft cooling tower. Instantaneous, daily and period energy flows and energy balance in the installation is presented. System and absorption machine temperature profiles are given for a clear, hot and dry day's operation. Daily and period system efficiencies are given. Peak insolation of 969 W m−2 (at 12:30 solar time on 08/08/03) produced 5.13 kW of cooling at a solar to cooling conversion efficiency of 11%. Maximum cooling capacity was 7.5 kW. Cooling was provided for 8.67 h and the chiller required a threshold insolation of 711 W m−2 for start-up and 373 W m−2 for shut-down. A minimum hot water inlet temperature to the generator of 65 °C was required to commence cold generation, whereas at 81 °C, 6.4 kW of cooling (18.3% of nominal capacity) was produced. The absorption refrigeration machine operated within the generation and absorption temperature ranges of 57–67 and 32–36 °C, respectively. The measured maximum instantaneous, daily average and period average COP were 0.60 (at maximum capacity), 0.42 and 0.34, respectively. Energy flows in the system are represented on a novel area diagram. The results clearly demonstrate that the technology works best in dry and hot climatic conditions where large daily variations in relative humidity and dry bulb temperature prevail. This case study provides benchmark data for the assessment of other similar prototypes and for the validation of mathematical models.  相似文献   

15.
A maximum for the coefficient of performance (COPf) is verified for a temperature difference between reservoirs and the hot isotherm of a closed irreversible cyclical refrigerator working at steady-state conditions. A maximum also exists when the COPf is considered as a function only of a parameter depending on the thermal characteristics of the heat exchangers. The influence of the parameter and entropy generation on the COPf maxima is described.  相似文献   

16.
We propose in this article an absorption chiller operating with binary alkane mixtures as an alternative to compression machines. It is an installation using low-level energy at a temperature below 150 °C (waste heat or solar energy) and operating with environmentally friendly fluids. Ten mixtures are considered and compared with two cooling mediums of the condenser and the absorber: the ambient air at 35 °C and the water at 25 °C. For an air-cooled chiller, the COP reaches 0.37 for the n-butane/octane system. This value remains 27% lower than that of an ammonia/water installation operating under the same conditions. For a water-cooling chiller, the n-butane/octane and propane/octane systems give a COP of about 0.63, which is comparable to that of the ammonia/water system. When n-butane is used as refrigerant, the machine works at a pressure under 5 bars, which is an advantage compared with machines working with ammonia/water mixtures.  相似文献   

17.
An ammonia Generator–Absorber heat eXchange (GAX) absorption cycle with combined cooling and hot water supply modes is developed in this study. This paper proposes new multi-modes GAX cycles which function in three different modes (case 1, case 2 and case 3) of cooling and hot water supply with one hardware (ammonia/water GAX absorption heat pump), and finds the best cycle for performance improvement by the parametric analysis. The key parameters are the outlet temperature of hot water and the split ratio of the solution. It is found that the COPc values for case 1, case 2 and case 3 are 60%, 42% and 87% of COPc for case 0, respectively, which is the standard cooling mode for the conventional GAX cycle. From the viewpoints of hot water supply, case 1 gives the best performance. However, during the summer season when the cooling mode is the primary purpose rather than the hot water supply, case 3 is the most desirable cycle. The split ratio of the solution should be carefully determined depending on the primary application of the modified GAX cycle; cooling or hot water supply applications. It is also recommended that the optimum design values of UASCA and UAHCA for case 3 should be less than those for case 1.  相似文献   

18.
Over the past few decades there have been considerable efforts to use adsorption (solid/vapor) for cooling and heat pump applications, but intensified efforts were initiated only since the imposition of international restrictions on the production and utilization of CFCs and HCFCs. In this paper, a dual-mode silica gel–water adsorption chiller design is outlined along with the performance evaluation of the innovative chiller. This adsorption chiller utilizes effectively low-temperature solar or waste heat sources of temperature between 40 and 95 °C. Two operation modes are possible for the advanced chiller. The first operation mode will be to work as a highly efficient conventional chiller where the driving source temperature is between 60 and 95 °C. The second operation mode will be to work as an advanced three-stage adsorption chiller where the available driving source temperature is very low (between 40 and 60 °C). With this very low driving source temperature in combination with a coolant at 30 °C, no other cycle except an advanced adsorption cycle with staged regeneration will be operational. The drawback of this operational mode is its poor efficiency in terms of cooling capacity and COP. Simulation results show that the optimum COP values are obtained at driving source temperatures between 50 and 55 °C in three-stage mode, and between 80 and 85 °C in single-stage, multi-bed mode.  相似文献   

19.
A thermodynamic cycle model is used to select an optimum adsorbent-refrigerant pair in respect of a chosen figure of merit that could be the cooling production (MJ m−3), the heating production (MJ m−3) or the coefficient of performance (COP). This model is based mainly on the adsorption equilibrium equations of the adsorbent–refrigerant pair and heat flows. The simulation results of 26 various activated carbon–ammonia pairs for three cycles (single bed, two-bed and infinite number of beds) are presented at typical conditions for ice making, air conditioning and heat pumping applications. The driving temperature varies from 80 °C to 200 °C. The carbon absorbents investigated are mainly coconut shell and coal based types in multiple forms: monolithic, granular, compacted granular, fibre, compacted fibre, cloth, compacted cloth and powder. Considering a two-bed cycle, the best thermal performances based on power density are obtained with the monolithic carbon KOH-AC, with a driving temperature of 100 °C; the cooling production is about 66 MJ m−3 (COP = 0.45) and 151 MJ m−3 (COP = 0.61) for ice making and air conditioning respectively; the heating production is about 236 MJ m−3 (COP = 1.50).  相似文献   

20.
The zeolite minerals analcime (Na16(Al16Si32O96) · 16H2O) and viséite (Na2Ca10(Al20Si6P10O60(OH)36) · 16H2O) were synthesized by hydrothermal treatment of artificial glasses of the respective same composition in a temperature range between 80 and 630°C at 100 MPa H2O pressure. The crystal symmetry of both zeolites varied systematically with temperature under the given experimental conditions, starting from orthorhombic symmetry at low synthesis temperatures, tetragonal at medium leading to cubic symmetry at highest zeolite synthesis temperatures. The crystal sizes varied between 500 nm and 100 μm. In case of analcime water free tectosilicates instead of zeolites were formed at T≥500°C while viséite was formed up to 630°C. The investigations showed the direct correlation between chemical composition of the starting materials and the formed zeolite phase under the given pT conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号