首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Consideration on brazing and soldering today and in future In all parts of industries using metals, the application of brazing and soldering is increasing. The origin of those technologies is assumed 6.000 years ago, and for a long time, they were limited to a few industrial fields only. In recent years, they turned out to become a source of innovation. Today, they are essential in different industries as microelectronics, electrical engineering, automotive industry, aviation industry, turbine industry or tool industry. Starting with defining brazing and soldering, especially in comparison to competitive joining techniques, some selected developments of the last decades are presented, as brazing of Aluminium, High Temperature Brazing and brazing of ceramic materials. Finally, an outlook is given concerning ongoing and future developments.  相似文献   

2.
The soldering embrittlement is a brazing defect due to local or continuous material separation. It can limit the guarantee and reliability of brazed joints or even render it impossible. Normally this material separation occurs in an intercrystalline way along the grain boundaries or even sub grain boundaries. Thus the liquid metal embrittlement belongs macroscopically to the embrittlements which were influenced by applied procedures on basic materials. The character of liquid metal embrittlement and the kinetic of crack formation can be compared to similar material separations such as reheat cracks next to welding line or red shortness cracks during the metal forming process. In the present article the authors compare these intercrystalline material separations and specify the common similarities and characteristics in which the brazing joints are focused.  相似文献   

3.
Developing a simple and industrially scalable method to produce graphene with high quality and low cost will determine graphene's future. The two conventional approaches, chemical vapor deposition and liquid‐phase exfoliation, require either costly substrates with limited production rate or complicated post treatment with limited quality, astricting their development. Herein, an extremely simple process is presented for synthesizing high quality graphene at low‐cost in the gas phase, similar to “snowing,” which is catalyst‐free, substrate‐free, and scalable. This is achieved by utilizing corona discharge of SiO2/Si in an ordinary household microwave oven at ambient pressure. High quality graphene flakes can “snow” on any substrate, with thin‐flakes even down to the monolayer. In particular, a high yield of ≈6.28% or a rate of up to ≈0.11 g h?1 can be achieved in a conventional microwave oven. It is demonstrated that the snowing process produces foam‐like, fluffy, 3D macroscopic architectures, which are further used in strain sensors for achieving high sensitivity (average gauge factor ≈ 171.06) and large workable strain range (0%–110%) simultaneously. It is foreseen that this facile and scalable strategy can be extended for “snowing” other functional 2D materials, benefiting their low‐cost production and wide applications.  相似文献   

4.
Soldering of aluminium matrix composites by modified technologies The correct procedure is for the soldering of aluminium‐matrix‐composites very important. Two basic facts must be given. On the one hand the oxides on the surface must be destroyed and removed for wetting. On the other hand the thermal influence on the basic material must be kept down. Otherwise the intended profile of the composites will change. That’s why the work temperature of the solder must be less than 300 °C. The tin‐based solders offer large potentials. However the low strength and creep stability of these solders have a harmful effect. For improving the characteristics oft the solder reinforcement with ceramic particles is meaningful. Presented were selected results of the particles containing solders. Thereby the compound strength and the creep behavior are regarded.  相似文献   

5.
This review describes emerging trends, basic principles, applications, and future challenges for designing next generation responsive “smart” surface capsules. Advances and importance of “surface” capsules which are not deposited onto the surface but are built into the surface are highlighted for selective applications with specific examples of surface sponge structures formed by high intensity ultrasonic surface treatment (HIUS). Surface capsules can be adapted for biomedical applications, membrane materials, lab‐on‐chip, organ‐on‐chip, and for template synthesis. They provide attractive self‐healing anticorrosion and antifouling prospects. Nowadays delivery systems are built from inorganic, organic, hybrid, biological materials to deliver various drugs from low molecular weight substances to large protein molecules and even live cells. It is important that capsules are designed to have time prolonged release features. Available stimuli to control capsule opening are physical, chemical and biological ones. Understanding the underlying mechanisms of capsule opening by different stimuli is essential for developing new methods of encapsulation, release, and targeting. Development of “smart” surface capsules is preferable to respond to multiple stimuli. More and more often a new generation of “smart” capsules is designed by a bio‐inspired approach.  相似文献   

6.
In the article a method for the material modelling is described under application of visually transparent materials of the thermal and chemical solidification processes when welding and soldering. All solidification processes carried out independently of the form of the primary crystals, first about the planar one, then cellular and in the end dendritically growth the solidification structure. It is determined by the chemical composition of the weld and soldering good, the weld, soldering, crystallization or solidification speeds and by the temperature gradients at the solidification front particularly. The vacancy concentration is made by the temporary formation of so‐called zipper primary grain boundaries in the solidification structure when welding. Among other things a preferential growth direction of the primary crystals explains itself by the fast growth of so‐called victim crystals which completes the known theories of the preferential growth.  相似文献   

7.
《Mauerwerk》2018,22(2):126-127
This publication concerns the differentiation between the terms ”confined masonry“ and ”infill masonry“ using the example of the national technical approval Z‐17.1‐1145 – POROTON S9 MW –vertically perforated clay units with integrated thermal insulation using thin layer mortar [1].  相似文献   

8.
FKM‐Guideline “Fracture Mechanics Proof of Strength for Engineering Components” The German guideline “Fracture Mechanics Proof of Strength for Engineering Components” [1, 2] has been released 2001 as a result of activities sponsored by the Research Committee on Mechanical Engineering (FKM), task group “Component Strength”. The guideline describes basics for the integrity assessment of cracked components subjected to static or cyclic loading and provides a step‐by‐step computational procedure for the use in engineering practice. The guideline was formulated based on a number of national and international reference documents, in particular SINTAP [3], R6 [4], BS 7910 [5] and DVS‐2401 [6], recent research results and some own key aspects. Since 2004 it is also available in English. The procedures and solutions of the guideline are implemented in the computer program FracSafe [7]. The latest 3rd edition of the guideline (2006) includes several new topics. These allow for the consideration of special effects at cyclic loading, mixed mode loading, dynamic (impact) loading, stress corrosion cracking and probabilistic aspects in fracture mechanics calculations. There is a compendium of stress intensity factors and limit load solutions and a compendium of material data. A lot of examples and case studies are included to demonstrate the application of the procedure to engineering problems. This paper gives an overview of the guideline [1].  相似文献   

9.
Discovering materials that exhibit zero linear compressibility (ZLC) behavior under hydrostatic pressure is extremely difficult. To date, only a handful of ZLC materials have been found, and almost all of them are ultrahard materials with densified structures. Here, to explore ZLC in nondense materials, a structural model analogous to the structure of the “Lu‐Ban stool,” a product of traditional Chinese woodworking invented 2500 years ago, is proposed. The application of this model to borates leads to the discovery of ZLC in AEB2O4 (AE = Ca and Sr) with the unique “Lu‐Ban stool”‐like structure, which can obtain a subtle mechanical balance between pressure‐induced expansion and contraction effects. Coupled with the very wide ultraviolet transparent windows, the ZLC behavior of AEB2O4 may result in some unique but important applications. The applications of the “Lu‐Ban stool” model open a new route for pursuing ZLC materials in nondense structural systems.  相似文献   

10.
Nature has developed reversibly adhesive surfaces whose stickiness has attracted much research attention over the last decade. The central lesson from nature is that “patterned” or “fibrillar” surfaces can produce higher adhesion forces to flat and rough substrates than smooth surfaces. This paper critically examines the principles behind fibrillar adhesion from a contact mechanics perspective, where much progress has been made in recent years. The benefits derived from “contact splitting” into fibrils are separated into extrinsic/intrinsic contributions from fibril deformation, adaptability to rough surfaces, size effects due to surface‐to‐volume ratio, uniformity of stress distribution, and defect‐controlled adhesion. Another section covers essential considerations for reliable and reproducible adhesion testing, where better standardization is still required. It is argued that, in view of the large number of parameters, a thorough understanding of adhesion effects is required to enable the fabrication of reliable adhesive surfaces based on biological examples.  相似文献   

11.
The novel application of two‐dimensional (2D) single‐layer ternary chalcogenide nanosheets as “capture‐release” fluorescence‐based biomolecular nanosensors is demonstrated. Fluorescently labeled biomolecular probe is first captured by the ultrathin Ta2NiS5 nanosheets and then released upon adding analyte containing a target biomolecule due to the higher probe‐target affinity. Here, the authors use a nucleic acid probe for the model target biomolecule Plasmodium lactate dehydrogenase, which is an important malarial biomarker. The ultrathin Ta2NiS5 nanosheet serves as a highly efficient fluorescence quencher and the nanosensor developed from the nanosheet is highly sensitive and specific toward the target biomolecule. Apart from the specificity toward the target biomolecule in homogeneous solutions, the developed nanosensor is capable of detecting and differentiating the target in heterogeneous solutions consisting of either a mixture of biomolecules or serum, with exceptional specificity. The simplicity of the “capture‐release” method, by eliminating the need for preincubation of the probe with the test sample, may facilitate further development of portable and rapid biosensors. The authors anticipate that this ternary chalcogenide nanosheet‐based biomolecular nanosensor will be useful for the rapid detection and differentiation of a wide range of chemical and biological species.  相似文献   

12.
Controversy concerning whether “software engineers” are, or should be, engineers provides an opportunity to think about how to define “engineer” and what effect different definitions may have on our understanding of engineering. The standard definitions of engineering are shown to generate more confusion than insight. Engineering should be defined historically, as an occupation, and ethically, as a profession. An engineer is a member of the engineering profession, that is, a member both of an occupation that is engineering by “birth,” “adoption,” or “marriage” and of the profession committed to engineering's code of ethics. Today, few “software engineers” satisfy either of these conditions. It is an open question whether they should.  相似文献   

13.
Fluorescence imaging in the second near‐infrared window (NIR‐II) is a new technique that permits visualization of deep anatomical features with unprecedented spatial resolution. Although attractive, effectively suppressing the interference signal of the background is still an enormous challenge for obtaining target‐specific NIR‐II imaging in the complex and dynamic physiological environment. Herein, dual‐pathological‐parameter cooperatively activatable NIR‐II fluorescence nanoprobes (HISSNPs) are developed whereby hyaluronic acid chains and disulfide bonds act as the “double locks” to lock the fluorescence‐quenched aggregation state of the NIR‐II fluorescence dyes for performing ultrahigh specific imaging of tumors in vivo. The fluorescence can be lit up only when the “double locks” are opened by reacting with the “dual smart keys” (overexpressed hyaluronidase and thiols in tumor) simultaneously. In vivo NIR‐II imaging shows that they reduce nonspecific activitation and achieve ultralow background fluorescence, which is 10.6‐fold lower than single‐parameter activatable probes (HINPs) in the liver at 15 h postinjection. Consequently, these “dual lock‐and‐key”‐controlled HISSNPs exhibit fivefold higher tumor‐to‐normal tissue ratio than “single lock‐and‐key”‐controlled HINPs at 24 h postinjection, attractively realizing ultrahigh specificity of tumor imaging. This is thought to be the first attempt at implementing ultralow background interference with the participation of multiple pathological parameters in NIR‐II fluorescence imaging.  相似文献   

14.
We discuss the applicability of some elementary models for the closure of in vitro “wounds” that are inflicted in monolayer cell cultures (also termed “wound healing assays”). These models can be applied to the simulation of healing of superficial wounds as long as they only concern the epidermis. We test several models that are based on a curvature driven displacement, a simple partial differential equation based model in which the actual cellular density is tracked. Finally, a semi‐stochastic cellular based model is evaluated.  相似文献   

15.
Membranes in cells display elaborate, dynamic morphologies intimately tied to defined cellular functions. Cisternae stacks are a common membrane morphology in cells widely found in organelles. However, compared with the well‐studied spherical cell membrane mimics, cisternae stacks as organelle membrane mimics are greatly neglected because of the difficulty of fabricating this unique structure. Herein, the grana‐like cisternae stacks are assembled via the reorganization of stacked microsized bicelles to mimic grana functions. The cisternae stacks are connected by fusion regions between adjacent cisternae. The number of cisternae can be controlled from ≈4 to 15 by the variation of ethanol volume percentage. Under the stimulation of solvent or negatively charged nanoparticles, the cisternae stacks can reversibly compress and expand, similar to the “breathing” property of natural grana. During the “breathing” process, nanoparticles are reversibly captured and released. Frequency resonance energy transfer is realized on the cisternae stacks trapped with two kinds of quantum dots. The cisternae stacks provide advanced membrane model for cell biotechnology, and clues for the shaping of organelles composed of cisternae. The ability of the cisternae stacks to capture materials enables them to possibly be applied in biomimetics and the design of advanced functional materials.  相似文献   

16.
A method is developed to directly map nanoscale “noise‐source switching” phenomena during the optoelectronic switching of phase‐separated polymer nanocomposites of tetrathiafulvalene (TTF) and phenyl‐C61‐butyric acid methyl ester (PCBM) molecules dispersed in a polystyrene (PS) matrix. In the method, electrical current and noise maps of the nanocomposite film are recorded using a conducting nanoprobe, enabling the mapping of a conductivity and a noise‐source density. The results provide evidence for a repeated modulation in noise sources, a “noise‐source switching,” in each stage of a switching cycle. Interestingly, when the nanocomposite is “set” by a high bias, insulating PS‐rich phases shows a drastic decrease in a noise‐source density which becomes lower than that of conducting TTF‐PCBM‐rich phases. This can be attributed to a trap filling by charge carriers generated from a TTF (donor)–PCBM (acceptor) complex. In addition, when the film is exposed to UV, an optical switching occurs due to chemical reactions which lead to irreversible changes on the noise‐source density and conductivity. The method provides a new insight on noise‐source activities during the optoelectronic switching of polymer nanocomposites and thus can be a powerful tool for basic noise research and applications in organic memory devices.  相似文献   

17.
2D molecular crystals (2DMCs) have attracted considerable attention because of their unique optoelectronic properties and potential applications. Taking advantage of the solution processability of organic semiconductors, solution self‐assembly is considered an effective way to grow large‐area 2DMCs. However, this route is largely blocked because a precise molecular design towards 2DMCs is missing and little is known about the relationship between 2D solution self‐assembly and molecular structure. A “phase separation” molecular design strategy towards 2DMCs is proposed and layer‐by‐layer growth of millimeter‐sized monolayer or few‐layer 2DMCs is realized. High‐performance organic phototransistors are constructed based on the 2DMCs with unprecedented photosensitivity (2.58 × 107), high responsivity (1.91 × 104 A W?1), and high detectivity (4.93 × 1015 Jones). This “phase separation” molecular design strategy provides a guide for the design and synthesis of novel organic semiconductors that self‐assemble into large‐area 2DMCs for advanced organic (opto)electronics.  相似文献   

18.
Next‐generation electrical nanoimprinting of a polymeric data sheet based on charge trapping phenomena is reported here. Carbon nanoparticles (CNPs) (waste carbon product) are deployed into a polymeric matrix (polyaniline) (PANI) as a charge trapping layer. The data are recorded on the CNPs‐filled polyaniline device layer by “electro‐typing” under a voltage pulse (VET, from ±1 to ±7 V), which is applied to the device layer through a localized charge‐injection method. The core idea of this device is to make an electrical image through the charge trapping mechanism, which can be “read” further by the subsequent electrical mapping. The density of stored charges at the carbon–polyaniline layer, near the metal/polymer interface, is found to depend on the voltage amplitude, i.e., the number of injected charge carriers. The relaxation of the stored charges is studied by different probe voltages and for different devices, depending on the percolation of the CNPs into the PANI. The polymeric data sheet retains the recorded data for more than 6 h, which can be refreshed or erased at will. Also, a write–read–erase–read cycle is performed for the smallest “bit” of stored information through a single contact between the probe and the device layer.  相似文献   

19.
Engineers need a breadth of experience to enrich the gene pool of ideas from which elegant engineering solutions can be drawn, called “individual diversity.” While performing large ethnographic research studies where hundreds of engineering students were interviewed, we interviewed Inez, a student that epitomizes individual diversity. Inez is unlike most engineers: she is female, multi‐minority, and from a socio‐economically disadvantaged background. Inez's story is told here using “ethnography of the particular,” where the story of a single individual is explored. Inez has persevered through challenges posed by her lack of familiarity with the culture of engineering, her weak high school preparation, and her feelings of being an outsider in engineering. Inez's story demonstrates that the playing field in engineering is still not level, particularly for socio‐economically disadvantaged students. Her story provides a poignant example of the impact of five of Conefrey's cultural myths of science.  相似文献   

20.
Luminescent solar concentrators (LSCs) can potentially reduce the cost of solar cells by decreasing the photoactive area of the device and boosting the photoconversion efficiency (PCE). This study demonstrates the application of “giant” CdSe/CdxPb1–xS core/shell quantum dots (QDs) as light harvesters in high performance LSCs with over 1.15% PCE. Pb addition is critical to maximize PCE. First, this study synthesizes “giant” CdSe/CdxPb1–xS QDs with high quantum yield (40%), narrow size distribution (<10%), and stable photoluminescence in a wide temperature range (100–300 K). Subsequently these thick alloyed‐shell QDs are embedded in a polymer matrix, resulting in a highly transparent composite with absorption spectrum covering the range 300–600 nm, and are applied as active material for prototype LSCs. The latter exhibits a 15% enhancement in efficiency with respect to 1% PCE of the pure‐CdS‐shelled QDs. This study attributes this increase to the contribution of Pb doping. The results demonstrate a straightforward approach to enhance light absorption in “giant” QDs by metal doping, indicating a promising route to broaden the absorption spectrum and increase the efficiency of LSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号