首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Analysis of adhesive bonded composite lap joints with transverse stitching   总被引:1,自引:0,他引:1  
The effect of transverse stitching on the stresses in the adhesive is investigated using an adhesive sandwich model with nonlinear adhesive properties and a transverse stitching model for adhesive bonded composite single-lap and double-lap joints. Numerical results indicate that, among all stitching parameters, thread pretension and stitch density have significant effect on the peel stresses in the adhesive; increase in the thread pretension and the stitch density leads to a decrease in peel stress in the adhesive, while an increase in other parameters generally results in a negligible reduction in peel stress. The effect of stitching was found to be negligible on the shear stresses in the adhesive. Thus it is concluded that stitching is effective for the joints where peel stresses are critical and ineffective for those where shear stresses are critical.  相似文献   

2.
针对含大孔口层合板(层合板宽度D与开孔半径R的比例D/R<6)缝合补强,考虑缝合线对面内纤维造成弯曲、断裂及针脚处夹杂和富树脂区的影响,利用有限元软件建立了大孔口层合板缝合补强模型。在拉伸载荷作用下,计算了不同缝合参数(针距、行距、边距、缝合线直径、缝合线张力)对层合板力学性能的影响。并将不同缝合参数对面内纤维造成的损伤等效为孔径的扩展,建立其等效开孔无边缘效应层合板有限元模型,得出了缝合补强时不同缝合参数对层合板整体承载能力的影响规律。针距越小,层合板承载能力越低;当针距小于3.14 mm时,随着边距的增大,层合板承载能力单调减小;当针距介于3.14 mm与6 mm之间时,随着边距的增大,层合板承载能力呈现出类似于正弦函数的变化形式,且整体趋势增大;当针距大于6 mm时,随着边距的增大,层合板承载能力单调增大;当中心圆孔的0°与90°位置存在针脚缺陷时,易造成层合板提前破坏。   相似文献   

3.
The insertion of local through-thickness reinforcements into dry fiber preforms by stitching provides a possibility to improve the mechanical performance of polymer-matrix composites perpendicular to the laminate plane (out-of-plane). Three-dimensional stress states can be sustained by stitching yarns, leading to increased out-of-plane properties, such as impact resistance and damage tolerance. On the other hand, 3D reinforcements induce dislocations of the in-plane fibers causing fiber waviness and the formation of resin pockets in the stitch vicinity after resin infusion which may reduce the in-plane stiffness and strength properties of the laminate.In the present paper an experimental study on the influence of varying stitching parameters on in-plane and out-of-plane properties of non-crimp fabric (NCF) carbon fiber/epoxy laminates is presented, namely, shear modulus and strength as well as compression after impact (CAI) strength and mode I energy release rate. The direction of stitching, thread diameter, spacing and pitch length as well as the direction of loading (which is to be interpreted as the direction of the three rail shear loading or the direction of crack propagation in case of mode 1 energy release rate testing) were varied, and their effect on the mechanical properties was evaluated statistically.The stitching parameters were found to have ambivalent effect on the mechanical properties. Larger thread diameters and increased stitch densities result in enhanced CAI strengths and energy release rates but deteriorate the in-plane properties of the laminate. On the other hand, a good compromise between both effects can be found with a proper selection of the stitching configurations.  相似文献   

4.
采用真空辅助树脂注射(VARI)成型工艺制备不同缝合方式和缝合密度的缝合泡沫夹层复合材料, 研究缝合参数对平面拉伸、三点弯曲、芯子剪切以及滚筒剥离性能的影响。结果表明: 缝合使泡沫夹层复合材料的平面拉伸强度和芯子剪切强度明显降低, 可以改善弯曲性能并大幅提高滚筒剥离性能, 改进锁式缝合方式优于临缝式缝合方式; 适当地增加缝合行距对力学性能有一定的积极作用, 但不利于滚筒剥离性能的提高; 与未缝合泡沫夹层复合材料相比, 当缝合密度为30 mm×10 mm时, 改进锁式缝合泡沫夹层复合材料的平拉强度和芯子剪切强度分别降低了14.75%和24.79%, 弯曲强度和平均剥离强度分别提高了7.96%和80.78%。  相似文献   

5.
从细观力学的角度出发,考虑了面内纤维弯曲及富树脂缺陷,建立了大开孔层合板缝合补强孔边针脚损伤的单胞模型。建立了纤维弯曲函数,推导了纤维弯曲区域的纤维体积分数及纤维弯曲角度。基于复合材料力学分析方法,计算得出了单胞的材料弹性常数。研究表明:缝合导致单胞面内纤维最大弯曲角不超过20°,单层板纵向杨氏模量减小,横向杨氏模量、剪切模量及泊松比均增大,变化幅度均在-8%~20%之间;且对于大开孔层合板缝合补强而言,针距变化引起的材料性能变化相对边距大许多。由上述计算结果,建立了一种缝合补强大开孔层合板力学性能计算的新方法,同时引入针孔模拟针脚处的应力集中现象,结果表明:缝合会造成层合板面内力学性能降低,并且对面内的压缩性能影响大于对面内拉伸性能的影响。   相似文献   

6.
建立了缝纫单层板的有效弹性常数分析模型。通过考虑缝纫引起的铺层纤维的面内弯曲和非均匀分布,分析了缝纫参数(如缝纫行距、针距和缝线半径)对等效弹性常数的影响。结果表明,当缝纫方向垂直于铺层纤维方向时,随缝纫行距的减小或缝线半径的增大,纵向模量逐渐下降,而横向模量和剪切模量则逐渐提高;缝纫针距对纵向模量影响很小。  相似文献   

7.
利用二维平面应变模型对缝合增强试验件进行失效分析,采用内聚力模型模拟界面的破坏情况,通过在分层的上下界面加入非线性弹簧元来模拟缝线的增强作用,非线性弹簧元的力学性能(桥联律)由细观力学方法获得。有限元分析结果与试验值吻合较好。在此基础上,对缘条区的缝合增强进行缝线的材料、直径和缝合密度的参数化分析,研究各参数对T型接头拉脱承载能力的影响。结果表明:缝合可显著提高T型接头的拉脱承载能力,同时能使其在较大的加载位移下仍保持较高的承载性能。T型接头的拉脱承载能力随缝线直径和缝合密度的增大而增大,且直径和密度的影响显著。缝线的拉伸强度是影响缝线性能最主要的因素, T型接头的拉脱强度随缝线拉伸强度的升高而升高。T型接头的拉脱强度随缝线拉伸模量的降低而升高,但拉伸模量的影响较拉伸强度的影响小。   相似文献   

8.
通过数值计算和对37组158个试件的实验测试与分析,研究了四种缝合参数对缝合复合材料板面内刚度和强度的影响。结果表明:1)缝合密度越大,缝合所产生的损伤就越大,对面内刚度的影响也就越大。几种常用缝合密度下的面内刚度差最大为纵向6%,横向11%,剪切9%;2)缝合密度和缝合工艺水平对面内拉伸强度和剪切强度有很大影响,缝合引起的拉伸强度和剪切强度降低分别达14%和17%,而对面内压缩强度的影响很小,最大强度降不到4%。3)当缝线方向与测试方向垂直时,可以得到较高的面内刚度值和较低的面内强度值。反之,当缝线方向与测试方向平行时,可以得到较低的面内刚度值和较高的面内强度值。最大变化幅值分别为21%和18%。  相似文献   

9.
In this study, a novel Interlaminar tension test (ITT) method was performed to experimentally investigate the bridging and fracture process of a single stitch fibre used to improve the delamination strength of composite laminates. Kevlar-29, of various thread thicknesses (44, 66, 88 and 132 tex), was used as the through-thickness stitch fibre in the ITT experiments. Key empirical force and displacement parameters, which governed the stitch fibre bridging law, were characterised and identified. Relationships of such parameters with thread thicknesses were determined. Fibre fracture load and fibre fracture energy are found to increase with increasing thread thickness. Frictional pull-out force greatly depends on the type of stitch fracture modes, which can be grouped into three categories. This paper aims to provide better physical understanding of the mechanics and mechanisms of stitch fibre fracture. By correlating critical stitch fracture parameters with stitch fibre thicknesses, the results expect to provide useful reference, which is essential and important for accurate stitch computational modeling and strength prediction of composites using stitching as the interlaminar reinforcement technique.  相似文献   

10.
In this paper, the damage failure and behaviour of stitched composites under compression after impact (CAI) loading are experimentally investigated. This study focuses on the effect of stitch density and stitch thread thickness on the CAI strength and response of laminated composites reinforced by through-thickness stitching. Experimental findings show that stitched composites have higher CAI failure load and displacement, which corresponds to higher energy absorption during CAI damage, mainly attributed to greater energy consumption by stitch fibre rupture. The coupling relationships between CAI strength, impact energy, stitch density and stitch thread thickness are also revealed. It is understood that the effectiveness of stitching has high dependency on the applied impact energy. At low impact energy range, CAI strength is found to be solely dependent on stitch density, showing no influence of stitch thread thickness. It is however observed that stitch fibre bridging is rendered ineffective in moderately stitched laminates during compressive failure, as local buckling occurs between stitch threads, resulting in unstitched and moderately stitched laminates have similar CAI strength. The CAI strength of densely stitched laminates is much higher due to effective stitch fibre bridging and numerous stitch thread breakages. At high impact energy level, CAI strength is discovered to be intimately related to both stitch density and stitch thread thickness. Since CAI failure initiates from impact-induced delamination area, stitch fibre bridging is considerable for all specimens due to the relatively large delamination area present. Stitch threads effectively bridge the delaminated area, inhibit local buckling and suppress delamination propagation, thus leading to increased CAI strength for laminates stitched with higher stitch density and larger stitch thread thickness. Fracture mechanisms and crack bridging phenomenon, elucidated by X-ray radiography are also presented and discussed. This study reveals novel understanding on the effectiveness of stitch parameters for improving impact tolerance of stitched composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号