首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
Abstract— A model based upon linear elastic bridging and fiber crack tip shielding is proposed for predicting fatigue crack growth in a SCS-6/Ti-6–4 composite. The model is characterized by the fiber/matrix debond length rather than the fiber/matrix interfacial frictional shear strength used in most current fatigue models. Finite elements combined with fracture mechanics are applied for computing the local stress intensity. The local stress intensity in the matrix is then utilized to predict crack growth in the composite via comparison to monolithic fatigue crack propagation data for a similar Ti-6–4 matrix material.  相似文献   

2.
Fatigue life modeling of titanium-based metal-matrix composites (MMCs) was accomplished by combining a unified viscoplastic theory, a non-linear micromechanics analysis and a damage accumulation model. The micromechanics analysis employed the Bodner-Partom unified viscoplastic theory with directional hardening. This analysis was then combined with a life-fraction fatigue model to account for the time-dependent component of fatigue damage. The life-fraction fatigue model involved the linear summation of damage from the fiber and matrix constituents of the composite. A single set of empirical constants for the life-fraction fatigue model were established for each of two titanium MMCs reinforced with silicon carbide fibers: SCS-6/Ti-15-3 and SCS-6/ TIMETAL®21s. The predicted fatigue lives were within one order of magnitude of the experimental data for different loading conditions: isothermal fatigue, and both in-phase and out-of-phase thermomechanical fatigue. MMCs modeled included cross-ply, quasi-isotropic and unidirectional SCS-6/TIMETAL®21s, and cross-ply and quasi-isotropic SCS-6/Ti-15-3 laminates.  相似文献   

3.
Titanium matrix composites (TMC) offer a combination of good mechanical properties and high temperature durability that make them attractive candidate materials for advanced engine components and high temperature structural applications. In such applications the material will be subjected to changing mechanical loads and temperature fluctuations, resulting in complex stress states within the constituents of the composite. This study examines how the various loading conditions on the TMCs are reflected in the fracture behaviour to gain insight into the damage mechanisms active in these materials. A fractographic study was conducted on several different TMC specimens, fabricated from Ti-15-3 and Timetal 21S alloys and SCS-6 fibres, that have been subjected to various thermomechanical loading conditions. The analysis showed that the Ti-15-3 composites were more susceptible to damage during sustained load at elevated temperature than the Timetal 21S composites. For both materials, striations only appear during elevated temperature fatigue when the residual processing stresses are relieved. During the Generic Hypersonic Flight Profile (GHFP) tests, the higher temperatures of the Mission 1 profile induce more damage in the Timetal 21S composites. The striations appear in the composites containing centre holes, unlike the unnotched specimens, indicating that the combined effect of stress concentration due to the hole and an underdeveloped fibre bridging zone may have resulted in crack closure.  相似文献   

4.
Unidirectional CVD SiC (SCS-6) monofilament reinforced BaOAl2O32SiO2(BAS) glass—ceramic matrix composites have been fabricated by a tape lay-up method followed by hot pressing. The glass matrix flows around fibers during hot pressing resulting in nearly fully dense (95–98%) composites. Strong and tough composites having first matrix cracking stress of 250–300 MPa and ultimate flexural strength as high as 900 MPa have been obtained. Composite fracture surfaces showed fiber pullout with no chemical reaction at the fiber/matrix interface. From fiber push out, the fiber/matrix interfacial debond strength and the sliding frictional stress were determined to be 5.9 ± 1.2 MPa and 4.8 ± 0.9 MPa, respectively. The fracture surface of an uncoated SiC (SCS-0)/BAS composite also showed fiber/matrix debonding, fiber pullout, and crack deflection around the fibers implying that the SiC fibers may need no surface coating for reinforcement of the BAS glass-ceramic. Applicability of micromechanical models in predicting the first matrix cracking stress and the ultimate strength of these composites has also been examined.  相似文献   

5.
The low cycle fatigue behaviour of four SiC fibre reinforced titanium matrix composites (TMCs) is examined at temperatures relevant to gas-turbine compressor components. It is found that, in the high cyclic stress/short life regime, the fatigue performance of the four TMCs is similar at each temperature. At lower stresses, however, more relevant to the gas-turbine compressor application, fatigue lives of Ti-6-4/SM1240, Timetal 834/SM1140+ and Timetal 834/SM1240 TMC all become significantly inferior to those of Ti-6-4/SM1140+ at temperatures of 450°C and above. This inferiority is attributed to intergranular embrittlement of the Timetal 834 matrix, the high creep resistance of the Timetal 834 matrix and due to an as yet unexplained weakening of the SM1240 fibre.  相似文献   

6.
Fibre reinforced titanium matrix composites (TMCs) are being considered for use in future aeronautical gas-turbine compressor discs. Low cycle fatigue is thought to be one of the mechanisms most damaging to such a component. Here, the low cycle fatigue behaviour of Ti-6-4, reinforced with SM1140+ fibre, is investigated over the temperature range 22°C to 600°C. SN curves have a characteristic S shape and can be split into three regions. Fractography, acoustic emission monitoring and cyclic strain recording have elucidated damage mechanisms in each region. In region I (high cyclic stress) damage is caused by matrix creep, that leads to fibre failure. In region III (low cyclic stress), the predominant damage mechanism is matrix crack growth. Cracks initiate at surface machining damage and grow, bridged by intact fibres, into the bulk. The matrix crack growth transfers stress to fibres, eventually causing them to fail in overload, resulting in specimen failure. In region II (intermediate cyclic stress) damage is by a combination of the mechanisms observed in regions I and III. Comparison of Ti-6-4/SM1140+ with Ti-6-4/SCS-6 shows that fatigue lives are similar in regions II and III. In region I it is possible that Ti-6-4/SM1140+ has inferior lives to Ti-6-4/SCS-6.  相似文献   

7.
An analytical model developed for predicting the inelastic response of metal matrix composites subjected to axisymmetric loading is employed to investigate the behavior of SiC---Ti composites under thermo-mechanical fatigue loading. The model is based on the concentric cylinder assemblage consisting of arbitrary numbers of elastic or inelastic sublayers with isotropic, transversely isotropic, or orthotropic, temperature-dependent properties. In the present work, the inelastic response of the titanium matrix is modeled by the Bodner-Partom unified viscoplastic theory. These features of the model allow the investigation of microstructural effects (such as the layered morphology of the SCS-6 fiber, including the weak carbon coating, and matrix microstructure) and rate-dependent response of the matrix on the fatigue behavior.

In this paper, we employ the predictions of the multiple concentric cylinder model to study the effects of the layered morphology of the SCS-6 SiC fiber and two-phase microstructure of the Ti-15-3 matrix on the response of a SiC---Ti composite under thermo-mechanical fatigue loading. It is shown that ignoring the microstructure can lead to significant errors in the predictions of the internal stress and inelastic strain distributions.  相似文献   


8.
Brittleness problem imposes a severe restriction on the potential application of tungsten as high-temperature structural material. In this paper, a novel toughening method for tungsten is proposed based on reinforcement by tungsten wires. The underlying toughening mechanism is analogous to that of fiber-reinforced ceramic matrix composites. Strain energy is dissipated by debonding and frictional sliding at engineered fiber/matrix interfaces. To achieve maximum composite toughness fracture mechanical properties have to be optimized by interface coating. In this work, we evaluated six kinds of ZrOx-based interface coatings. Interfacial parameters such as shear strength and fracture energy were determined by means of fiber push-out tests. The parameter values of the six coatings were comparable to each other and satisfied the criterion for crack deflection. Microscopic analysis showed that debonding occurred mostly between the W filament and the ZrOx coating. Feasibility of interfacial crack deflection was also demonstrated by a three-point bending test.  相似文献   

9.
Fragmentation tests of single SiC filaments embedded in an aluminium (1050 and 5083 alloys) or a titanium (Ti-6Al-4V) matrix have been analysed in an effort to obtain the interface contribution in terms that could be incorporated into a tensile fracture model for unidirectional composites. Depending on the matrix, two regimes of interfacial stress transfer can be distinguished within the whole range of tested temperatures. For the SCS2/5083 system, plastic deformation of the alloy limits the stress transfer, and the interface contribution thus finds its expression in the shear stress of the matrix. for the SCS6/Ti-6Al-4V system, friction is the leading process and the interface contribution strongly depends on the stress state around the fibre. Assuming a temperature dependent compressive radial stress up to 925C, an effective transfer shear stress may be easily calculated for unidirectional SCS6/Ti-6Al-4V composites.  相似文献   

10.
A model for the ultimate tensile strength of unidirectional fiber-reinforced brittle matrix composite is presented. In the model, transverse matrix crack spacing and change in debonding length between the fiber and the matrix is continuously monitored with increasing applied load. A detailed approximate stress analysis, together with a Weibull failure statistics for fiber fracture, are used to determine the probability of fiber fracture and fiber fracture location in the composite. Results of the model are consistent with experimental data. It is suggested from the results that the strength and toughness of the composite are significantly influenced by the Weibull modulus of the fiber and the fiber/matrix interfacial shear stress. A higher fiber Weibull modulus results in a lower composite strength while a higher fiber/matrix interfacial shear stress results in a composite with higher strength but lower toughness. A moderate variation in matrix strength and fiber/matrix interfacial shear strength does not significantly affect the strength of the composite.  相似文献   

11.
MWNTs-EP/PSF (polysulfone) hybrid nanofibers with preferred orientation were directly electrospun onto carbon fiber/epoxy prepregs and interlaminar synchronously reinforced and toughened CFRP composites were successfully fabricated. With MWNTs-EP loading increasing, the oriented nanofibers were obtained accompanying with enhanced alignment of inner MWNTs-EP. Flexural properties and interlaminar shear strength of composites were improved with increasing MWNTs-EP loadings, whereas fracture toughness attained maximum at 10 wt% MWNTs-EP loading and then decreased. Based on these results, multiscale schematic modeling and mechanism schematic of hybrid nanofibers reinforced and toughened composites were suggested. Due to the preferred orientation of nanofibers, MWNTs-EP was inclined to align vertically to carbon fiber direction along the in-plane of interface layer. The proposed network structures, containing four correlative phases of MWNTs-EP/PSF sphere/carbon fiber/epoxy matrix, contributed to simultaneous improvement of strength and toughness of composites, which was realized by crack pinning, crack deflection, crack bridging and effective load transfer.  相似文献   

12.
Epoxy matrix toughened by polyethersulfone (PES) and polyamide (PA) microparticles was designed and the in-situ interlaminar toughened carbon fiber/epoxy composites were fabricated. Synergistic toughening effect of PES and PA on epoxy matrix was achieved due to semi-IPN structure of PES toughened matrix and uniform dispersion of PA microparticles. Shear-calender orientation of PA microparticles was found during prepreg processing and the microparticles remained on the surface of prepreg due to fiber-bundle filtration. The in-situ formed toughening interlayer of PA microparticles and interfacial bonding between PA and epoxy matrix were detected, which resulted in enhanced fracture toughness, CAI, and transverse flexural strength of the composite based on the PES/PA synergistically toughened matrix. SEM images of fracture morphology of the composite showed evidence of enhanced plastic deformation created by PES and PA, and crack deflection and bridging by PA microparticles.  相似文献   

13.
In this work, the effects of as-produced GO and silane functionalized GO (silane-f-GO) loading and silane functionalization on the mechanical properties of epoxy composites are investigated and compared. Such silane functionalization containing epoxy ended-groups is found to effectively improve the compatibility between the silane-f-GO and the epoxy matrix. Increased storage modulus, glass transition temperature, thermal stability, tensile and flexural properties and fracture toughness of epoxy composites filled with the silane-f-GO sheets are observed compared with those of the neat epoxy and GO/epoxy composites. These findings confirm the improved dispersion and interfacial interaction in the composites arising from covalent bonds between the silane-f-GO and the epoxy matrix. Moreover, several possible fracture mechanisms, i.e. crack pinning/deflection, crack bridging, and matrix plastic deformation initiated by the debonding/delamination of GO sheets, were identified and evaluated.  相似文献   

14.
Three-dimensional reinforcement of woven advanced polymer–matrix composites using aligned carbon nanotubes (CNTs) is explored experimentally and theoretically. Radially-aligned CNTs grown in situ on the surface of fibers in a woven cloth provide significant three-dimensional reinforcement, as measured by Mode I interlaminar fracture testing and tension-bearing experiments. Aligned CNTs bridge the ply interfaces giving enhancement in both initiation and steady-state toughness, improving the already tough system by 76% in steady state (more than 1.5 kJ/m2 increase). CNT pull-out on the crack faces is the observed toughening mechanism, and an analytical model is correlated to the experimental fracture data. In the plane of the laminate, aligned CNTs enhance the tension-bearing response with increases of: 19% in bearing stiffness, 9% in critical strength, and 5% in ultimate strength accompanied by a clear change in failure mode from shear-out failure (matrix dominated) without CNTs to tensile fracture (fiber dominated) with CNTs.  相似文献   

15.
The combined analysis of the fracture toughness enhancement of carbon nanotube (CNT)-reinforced composites is herein carried out on the basis of atomistic simulation, shear-lag theory and facture mechanics. It is found that neither longer reinforced CNTs nor stronger CNT/matrix interfaces can definitely lead to the better fracture toughness of these composites. In contrast, the optimal interfacial chemical bond density and the optimal CNT length are those making the failure mode just in the transition from CNT pull-out to CNT break. To verify our theory, an atomic/continuum finite element method (FEM) is applied to investigate the fracture behavior of CNT-reinforced composites with different interfacial chemical bond densities. Our analysis shows that the optimal interfacial chemical bond density for (6,6) CNTs is about 5–10% and that increasing the CNT length beyond 100 nm does not further improve fracture toughness, but can easily lead to the self-folding and clustering of the CNTs. The proposed theoretical model is also applicable to short fiber-reinforced composites.  相似文献   

16.
The mechanical behavior of unidirectional fiber-reinforced polymer composites subjected to tension and compression perpendicular to the fibers is studied using computational micromechanics. The representative volume element of the composite microstructure with random fiber distribution is generated, and the two dominant damage mechanisms experimentally observed – matrix plastic deformation and interfacial debonding – are included in the simulation by the extended Drucker–Prager model and cohesive zone model respectively. Progressive failure procedure for both the matrix and interface is incorporated in the simulation, and ductile criterion is used to predict the damage initiation of the matrix taking into account its sensitivity to triaxial stress state. The simulation results clearly reveal the damage process of the composites and the interactions of different damage mechanisms. It can be concluded that the tension fracture initiates as interfacial debonding and evolves as a result of interactions between interfacial debonding and matrix plastic deformation, while the compression failure is dominated by matrix plastic damage. And then the effects of interfacial properties on the damage behavior of the composites are assessed. It is found that the interfacial stiffness and fracture energy have relatively smaller influence on the mechanical behavior of composites, while the influence of interfacial strength is significant.  相似文献   

17.
Fatigue crack growth testing has been applied to boron/Ti-6Al-4V composites in order to investigate simultaneously crack propagation mechanisms during the fatigue and overload portion of the experiments. It is concluded that linear elastic fracture mechanics (LEFM) for heterogeneous and anisotropic materials facilitates understanding of the rupture mechanisms and the assessment of failure work and toughness. The influence of isothermal exposure on crack propagation mechanisms has been pointed out. A short duration heat treatment at 850 C improves the composite toughness and reduces the fatigue crack growth rate although the fibrematrix (FM) interfacial bonding is increased. This effect has been related to a damage mechanism initiated in the interfacial reaction zone. In any case, the fatigue behaviour of the composite is controlled by the matrix and the capability of the fibres to function as crack arrestors. The impeding effect of the fibres is no longer effective when the thermal exposure duration is significant.  相似文献   

18.
For investigating the effect of fiber content on the material and interfacial bond properties of ultra high performance fiber reinforced concrete (UHPFRC), four different volume ratios of micro steel fibers (Vf = 1%, 2%, 3%, and 4%) were used within an identical mortar matrix. Test results showed that 3% steel fiber by volume yielded the best performance in terms of compressive strength, elastic modulus, shrinkage behavior, and interfacial bond strength. These parameters improved as the fiber content was increased up to 3 vol.%. Flexural behaviors such as flexural strength, deflection, and crack mouth opening displacement at peak load had pseudo-linear relationships with the fiber content. Through inverse analysis, it was shown that fracture parameters including cohesive stress and fracture energy are significantly influenced by the fiber content: higher cohesive stress and fracture energy were achieved with higher fiber content. The analytical models for the ascending branch of bond stress-slip response suggested in the literature were considered for UHPFRC, and appropriate parameters were derived from the present test data.  相似文献   

19.
The axisymmetric cell model consisting of interface, matrix and reinforced particle is used to simulate the tensile test of particle reinforced metal matrix composite for predicting the micro stress/strain field and macro tensile stress/strain curve. In simulation of the tensile test, the cohesive element model is selected to model interfacial crack growth. It mainly analyzed the effects of interfacial properties, reinforcement volume fractions and aspect ratios on the stress–strain states of particle reinforced metal matrix composite. The results show that the peak micro stress and plastic strain occur at the interface in which it is a certain angle from the tensile stress direction; with the interfacial fracture toughness and reinforcement volume fraction increasing, the flow stress increases firstly and then decreases. The tensile stress–strain properties of SiC/6064Al are good when the interfacial fracture toughness is equal to 60 J/m and the reinforcement fraction volume is equal to 20%. Smaller reinforcement aspect ratio leads to smaller micro stress in composites.  相似文献   

20.
A hierarchical Cf/C–SiC composite was fabricated via in situ growth of carbon nanotubes (CNTs) on fiber cloths following polymer impregnation and pyrolysis process. The effects of CNTs grown in situ on mechanical properties of the composite, such as flexural strength, fracture toughness, crack propagation behavior and interfacial bonding strength, were evaluated. Fiber push-out test showed that the interfacial bonding strength between fiber and matrix was enhanced by CNTs grown in situ. The propagation of cracks into and in fiber bundles was impeded, which results in decreased crack density and a “pull-out of fiber bundle” failure mode. The flexural strength was increased while the fracture toughness was not improved significantly due to the decreased crack density and few interfacial debonding between fiber and matrix, although the local toughness can be improved by the pull-out of CNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号