首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
Susceptibility to matrix driven failure is one of the major weaknesses of continuous-fiber composites. In this study, helical-ribbon carbon nanofibers (CNF) were dispersed in the matrix phase of a continuous carbon fiber-reinforced composite. Along with an unreinforced control, the resulting hierarchical composites were tested to failure in several modes of quasi-static testing designed to assess matrix-dominated mechanical properties and fracture characteristics. Results indicated CNF addition offered simultaneous increases in tensile stiffness, strength and toughness while also enhancing both compressive and flexural strengths. Short-beam strength testing resulted in no apparent improvement while the fracture energy required for the onset of mode I interlaminar delamination was enhanced by 35%. Extrinsic toughening mechanisms, e.g., intralaminar fiber bridging and trans-ply cracking, significantly affected steady-state crack propagation values. Scanning electron microscopy of delaminated fracture surfaces revealed improved primary fiber–matrix adhesion and indications of CNF-induced matrix toughening.  相似文献   

2.
A semi-empirical model is proposed for the complex permittivity of composites containing electrical conductive carbon nanomaterials such as carbon black (CB), carbon nanofiber (CNF) and multi-walled carbon nanotube (CNT). The composites were fabricated with E-glass fabric/epoxy prepregs. The model is based on the percolation theory. The model is available for the composite of filler content over the percolation threshold and applicable within the high frequency band in which AC electrical conductivity of the composite is continuously proportional to the frequency. The proposed model is composed of the numerical equations of the scaling law in percolation theory and constants obtained from experiments to quantify the model. The model describes the complex permittivity as a function of frequency and filler content. The model was verified when compared with the measurements. The measurements for the complex permittivities of the composites were performed at the frequency band between 0.5 and 18.0 GHz using a vector network analyzer with a 7 mm coaxial air line.  相似文献   

3.
Growth of carbon nanotubes (CNT) or carbon nano-fibres (CNF) on carbon fibrous substrates is a way to increase the fracture toughness of fibre reinforced composites (FRC), with encouraging results reported in the recent years. If these nano-engineered FRC (nFRC) are destined to leave laboratories and enter industrial-scale production, a question of adapting the existing composite manufacturing methods will arise. The paper studies compressibility of woven carbon fibre performs (two types of fabrics) with CNT/CNF grown on the fibres using the CVD method. The results include pressure vs thickness and pressure vs fibre volume fraction diagrams for one and four layers of the fabric. Morphology of the nFRC is studied with SEM. It is shown that the pressure needed to achieve the target fibre volume fraction of the preform increases drastically (for example, from 0.05 MPa to more than 0.5 MPa for a fibre volume fraction of 52%) when CNT/CNF are grown on it. No change in nesting of the fabric plies is noticed. The poor compressibility can lower the achievable fibre volume fraction in composite for economical vacuum assisted light-RTM techniques and increase the pressure requirements in autoclave processing.  相似文献   

4.
The effect of cellulose nano fibers (CNF): micro-fibrillated cellulose and bacteria cellulose fibers were investigated on the fatigue life of carbon fiber (CF) fabric/epoxy (EP) composites. Epoxy used as the matrix was physically modified with CNF in advance before fabricating the laminates. The high cycle fatigue strength was significantly improved at 0.3 wt% CNF. There exists an appropriate CNF content which makes the fatigue life longest. An increase of adhesive strength between CF and matrix results due to physical modification with CNF. The adhesive strength much increases with increasing the CNF content. Almost no interfacial debonding occurs at 0.8 wt% CNF content when CF breakage takes place. On the other hand, some debonding occurs along CFs from the breaking point at 0.3 wt% CNF. Debonding is more significant in the case of no CNF addition to the matrix. An appropriate interfacial strength brought at 0.3 wt% CNF is the key of fatigue life extension.  相似文献   

5.
Notched and unnotched Izod impact strength of cellulose nanofibers (CNFs) and microfibrillated cellulose (MFC)-filled impact modified polypropylene (PP) composites were measured and compared with microcrystalline cellulose (MCC)-filled composites. An Izod impact fracture initiation resistance theory was formulated and a characteristic impact resistance model was developed to evaluate the unique impact characteristics of cellulose nanofibril-filled PP composites. As filler loading increased CNF and MFC-filled composites showed higher characteristic impact resistance than MCC-filled ones. Among the cellulose fillers used in this study, CNF were found to be the most resistant of the three materials tested in terms of characteristic impact resistance. Even though impact resistance in not the only evaluation tool, characteristic impact resistance is an evaluation tool used to determine the material’s unique and hidden impact characteristics. The characteristic impact resistance model is useful for analysis of the impact behavior of any polymer composite material. It was also found that impact modified PP used in this study is more fracture resistant, but more crack sensitive, than conventional PP.  相似文献   

6.
Carbon nanofiber (CNF)/poly(methyl methacrylate) (PMMA) nanocomposites were prepared via melt-compounding, solvent casting and in situ polymerization. Mechanical properties, rheological behavior and electrical resistivity were investigated in specimens with varying CNF loadings. The three processing techniques were compared. Improved properties were obtained in the solvent processed and in situ polymerized composites. The rheological and electrical percolation of these nanocomposites appeared in the same concentration set (between 1 and 5 wt%). No changes were found in melt-compounding, even by the addition of 10 wt% of CNFs. Electrical resistivity of the samples prepared by solvent casting was measured before and after pressing in the hot plate press. It is remarkable that in the non-pressed samples the CNFs formed an efficient 3-D conductive network, yielding composites with percolation thresholds even six orders of magnitude lower than after pressing, where this 3-D network was destroyed.  相似文献   

7.
In this research, the effects of carbon nanofibers (CNFs) on thermo-elastic properties of carbon fiber (CF)/epoxy composite for the reduction of thermal residual stresses (TRS) using micromechanical relations were studied. In the first step, micromechanical models to calculate the coefficient of thermal expansion (CTE) and Young's modulus of CNF/epoxy and CNF/CF/epoxy nanocomposites were developed and compared with experimental results of the other researchers. The obtained results of the CTE and Young's modulus of modified Schapery and Halpin-Tsai theories have good agreement with the experimental results. In the second step, the classical lamination theory (CLT) was employed to determine the TRS for CNF/CF/epoxy laminated nanocomposites. Also, the theoretical results of the CLT were compared with experimental results. Finally, reduction of the TRS using the CLT for different lay-ups such as cross ply, angle ply, and quasi-isotropic laminates were obtained. The results demonstrated that the addition of 1% weight fraction of CNF can reduce the TRS that the most reduction occurred in the unsymmetric cross-ply laminate by up to 27%.  相似文献   

8.
In order to explore practical application of graphene as novel conductive fillers in the filed of composite materials, we prepared anti-static multi-layer graphene (MLG) filled poly(vinyl chloride) (PVC) composite films by using conventional melt-mixing method, and investigated electrical conductivity, tensile behavior, and thermal properties of the MLG/PVC composite films. We found that the presence of MLG can greatly increase electrical conductivity of the MLG/PVC composites, and the surface electrical conductivity of the MLG/PVC composites is less than 3 × 108 Ohm/square when the MLG loading is about 3.5 wt%, meeting anti-static requirement for commercial anti-static PVC films. On the other hand, the MLG/PVC composites exhibited higher tensile modulus and higher glass transition temperature than neat PVC, which is closely associated with crumpled morphology of the MLG and good compatibility between components of the MLG/PVC composites. By virtue of its satisfied anti-static performance and high mechanical properties, the MLG/PVC composites exhibit great potential to be used as high-performance antistatic materials in many fields.  相似文献   

9.
Several types of carbon nanofibres (CNF) were coated with a uniform and dense copper layer by electroless copper deposition. The coated fibres were then sintered by two different methods, spark plasma sintering (SPS) and hot pressing (HP). The Cu coating thickness was varied so that different volume fraction of fibres was achieved in the produced composites. In some cases, the CNF were pre-coated with Cr for the improvement the Cu adhesion on CNF. The results show that the dispersion of the CNF into the Cu matrix is independent of the sintering method used. On the contrary, the dispersion is directly related to the efficiency of the Cu coating, which is tightly connected to the CNF type. Overall, strong variations of the thermal conductivity (TC) of the composites were observed (20–200 W/mK) as a function of CNF type, CNF volume fraction and Cr content, while the coefficient of thermal expansion (CTE) in all cases was found to be considerably lower than Cu (9.9–11.3 ppm/K). The results show a good potential for SPS to be used to process this type of materials, since the SPS samples show better properties than HP samples even though they have a higher porosity, in applications where moderate TC and low CTE are required.  相似文献   

10.
Electrical and thermal behavior of the carbon fiber-reinforced epoxy composites subjected to relatively high (up to 75 A) steady electric currents is studied. A fully automated experimental setup for real time measurements of the electric current, resistance, voltage, and temperature in carbon fiber-reinforced epoxy matrix composites has been developed. A series of electrical characterization tests on IM7/977-3 unidirectional and symmetric cross-ply composite laminates have been performed and the effects of electric current magnitude and duration, electrical resistance, and associated thermal effects have been investigated. It is determined that electrical resistance exhibits time-dependent behavior. It is also found that application of an electric current leads to a significant temperature rise in the composites that is a result of the intense Joule heat produced in the electrically conductive carbon fibers as well as in the composite-electrode contact.  相似文献   

11.
In this paper, stacked-cup carbon nanofibers (CNF) were dispersed in the matrix phase of carbon-fiber-reinforced composites based on a high-performance epoxy system with and without modification by an elastomeric triblock copolymer (TCP) for increased toughness. The addition of the TCP provided an enhancement in toughness at the cost of a slight degradation in modulus and strength. The CNFs, on the other hand, provided significantly enhanced strength and stiffness in matrix-dominated configurations, including tension of quasi-isotropic composites and short beam shear strength of both quasi-isotropic and unidirectional composites. Scanning electron microscopy revealed enhanced adhesion between the matrix and carbon fibers with the addition of either TCP or CNFs. However, CNF agglomeration in the studied systems partially offset the energy dissipation processes brought about by the nanofibers, thereby limiting interlaminar fracture toughness enhancements by CNF addition. These results show good promise for CNFs as low-cost reinforcement for composites while offering insight into the codependent morphologies of multi-scale phases and their influence over bulk properties.  相似文献   

12.
Utilizing the extra-ordinary properties of carbon nanotube (CNT) in metal matrix composite (MMC) for macroscopic applications is still a big challenge for science and technology. Very few successful attempts have been made for commercial applications due to the difficulties incorporating CNTs in metals with up-scalable processes. CNT reinforced copper and copper alloy (bronze) composites have been fabricated by well-established hot-press sintering method of powder metallurgy. The parameters of CNT–metal powder mixing and hot-press sintering have been optimized and the matrix materials of the mixed powders and composites have been evaluated. However, the effect of shape and size of metal particles as well as selection of carbon nanotubes has significant influence on the mechanical and electrical properties of the composites. The hardness of copper matrix composite has improved up to 47% compared to that of pure copper, while the electrical conductivity of bronze composite has improved up to 20% compared to that of the pure alloy. Thus carbon nanotube can improve the mechanical properties of highly-conductive low-strength copper metals, whereas in low-conductivity high-strength copper alloys the electrical conductivity can be improved.  相似文献   

13.
In situ polymerisation provides a route to polystyrene (PS) matrix composites reinforced with aligned multi-walled carbon nanotubes (MWNTs). As shown, fully densified composites can be prepared; by varying the number of layers of aligned MWNT arrays, desired thickness of the composite can be manufactured. These aligned composites have characteristic anisotropic electrical and thermal properties.  相似文献   

14.
Carbon nanofiber (CNF) reinforced epoxy matrix nanocomposites and CNF reinforced glass hollow particle filled syntactic foams are studied for electrical properties. The effect of CNF weight fraction, hollow particle volume fraction, and hollow particle wall thickness on impedance and dielectric constant are characterized. The results show that the impedance decreases and the dielectric constant increases with increasing CNF content in the composites. Nanocomposites containing 10 wt.% CNFs showed significantly higher dielectric constant because of the presence of a continuous network of CNFs in the composite. CNF reinforced syntactic foams showed higher dielectric constant than the neat resin. The CNF content had a more prominent effect on the dielectric constant than the glass hollow particle volume fraction and wall thickness. The Maxwell–Garnett and the Jayasundere–Smith models are modified to include the effect of hollow particle wall thickness and obtain predictions of dielectric constants of syntactic foams. The semi-empirical predictions obtained from Maxwell–Garnett models are closer to the experimental values. Lightweight syntactic foams, tailored for electrical properties, can be useful in electronic packaging applications.  相似文献   

15.
Seawater absorption in concrete structures can be a serious problem in humid and marine environments. It was demonstrated that non-adhesive (separated by aluminum foil) filament wound tubes could better reinforce concrete cylinders. Furthermore, composites have ever proved to be resistant to detrimental environment. Therefore, in this study four kinds of non-adhesive composite materials are used to reinforce concrete cylinders, and then composite/concrete systems are subjected to six environmental conditions. The composites include hand-wrapped woven cloth glass/epoxy, filament wound glass/epoxy, glass-kevlar-glass hybrid, and glass-carbon-glass hybrid. These allow comparing reinforcement effect from various processing methods, fibers, and interface. The six environmental conditions consist of soaking in live or dead seawater, soaking before or after winding, and air aging before or after winding. The first and second conditions can verify the accuracy of the experiment in laboratory (dead seawater) without bothering to test near coast (live seawater). The third to sixth conditions can provide a good designing criterion regarding what the best sequence is for reinforcing seawater or air attacked concrete structure by composites.  相似文献   

16.
以聚乳酸(PLA)为基体,聚丁二酸丁二醇酯(PBS)为增韧相,纳米纤维素(CNF)为增强相,采用不同的挤出温度,利用双螺杆挤出机熔融共混制备出一系列CNF/PBS母粒改性PLA复合材料。采用扫描电子显微镜、广角X射线衍射仪、差示扫描量热仪、偏光显微镜和万能试验机以及悬臂梁冲击试验机对复合材料的结晶和力学性能进行测试。结果表明:CNF可以起到异相成核的作用,但含量过多易引起团聚;与纯PLA相比,当CNF/PBS复合母粒的添加量为20%时,低温挤出的复合材料的结晶度、冲击强度分别提高了10.66%和141.51%,拉伸强度仅下降14.86%;当CNF/PBS母粒的添加为20%时,低温挤出的PLA基复合材料的结晶度、拉伸强度和冲击强度分别较高温下挤出的复合材料提高了11.61%、3.82%和16.37%。  相似文献   

17.
Recent work has shown that the interlayer adhesion of single-polymer composites produced by the Leeds hot compaction process can be significantly improved by either introducing interleaved films of the same polymer between the layers of woven oriented tapes that make up the composite or by the incorporation of carbon nanofibres (CNF) into the oriented tapes prior to hot compaction, or by a combination of these two approaches to produce a synergistic effect.Following on from these findings, we have now investigated the changes in the interlayer peel strength caused by incorporating other micron and nano-scale fillers into polypropylene films which are interleaved into the interlayer region of the hot compacted composite. The filler initially chosen for this study was talc, but a number of other fillers have also been investigated. Scanning electron microscopy has been used to image the peel surfaces and to undertake a preliminary study of the effects of particle size and shape on the peel strength.  相似文献   

18.
Carbon nanotubes (CNTs) are an excellent candidate for the reinforcement of composite materials owing to their distinctive mechanical and electrical properties. Reticulate carbon nanotubes (R-CNTs) with a 2D or 3D configuration have been manufactured in which nonwoven connected CNTs are homogeneously distributed and connected with each other. A composite reinforced by R-CNTs can be fabricated by infiltrating a polymer into the R-CNT structure, which overcomes the inherent disadvantages of the lack of weaving of the CNTs and the low strength of the interface between CNTs and the polymer. In this paper, a 2D plane strain model of a R-CNT composite is presented to investigate its micro-deformation and effective stiffness. Using the two-scale expansion method, the effective stiffness coefficients and Young’s modulus are determined. The influences of microstructural parameters on the micro-deformation and effective stiffness of the R-CNT composite are studied to aid the design of new composites with optimal properties. It is shown that R-CNT composites have a strong microstructure-dependence and better effective mechanical properties than other CNT composites.  相似文献   

19.
The practice of upgrading metal parts with composites in large structures has led to an increased use of composite joints, particularly mechanical fastenings, due to ease of assembly and replacement. A drawback of mechanical joints is that damage is difficult to detect visually. In this research, an embedded carbon nanotube network has been used to modify the conductivity of bolted composite joints. In situ electrical resistance measurements in conductive composites have potential to provide quantitative evidence of damage as well as insight into the type of damage which occurs during tensile loading. We demonstrate that the electrical resistance of a bolted composite joint is more sensitive to certain modes of damage (e.g., matrix cracking and delamination) than others (bearing and shear-out), due mostly to the varying amount of void space created, thus proving the potential of an embedded carbon nanotube network in the health monitoring of mechanically fastened cross-ply composites.  相似文献   

20.
Growth of carbon nanotubes (CNT) or carbon nano-fibres (CNF) on fibrous substrates is a way to increase the fracture toughness of fibre reinforced composites (FRC), with encouraging results reported in the recent years. The issues for these materials related to manufacturing of these composites are, however, less investigated. Following the study of compressibility of woven carbon fibre preforms with CNT/CNFs grown on the fibres using the CVD method [Compos Sci Technol 2011; 71(3): 315-325], this paper describes compression tests on the carbon tows used in these fabrics. The results of the measurements include pressure vs. thickness diagrams in consecutive compression cycles and hysteresis of the compression. The results confirm a drastic change of compressibility of fibrous assemblies in the presence of CNT/CNF grafting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号