首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Fast temperature programming (20-50 °C/min) is used with relatively short separation columns to achieve high-speed separations of mixtures covering a wide boiling point range. A cryofocusing inlet is used to obtain narrow injection plugs. High-speed temperature-programmed chromatograms are evaluated by considering local peak capacity as a function of carbon number and boiling point for the normal alkanes in the range C(8)-C(19). The peak capacity generation rate (peaks per second) as a function of carbon number and the total cumulative peak capacity as a function of time are also considered for various column lengths and carrier gas flow rates. Column lengths in the range 3.6-25.4 m and average carrier gas velocity values in the range 50-200 cm/s are considered. For a 6.8-m-long, 0.25-mm-i.d. column operated at an average carrier gas velocity of about 100 cm/s and using a nominal programming rate of 50 °C/min, C(19) elutes in 178 s with a total peak capacity of 168 peaks. If the programming rate is reduced to 20 °C/min, the C(19) elution time more than doubles but the total peak capacity increases by only 20%. For a 25.4-m-long column using a nominal 50 °C/min programming rate, the C(19) retention time is 262 s with a peak capacity of 279 peaks. The use of average carrier gas flow rates greater than about 100 cm/s, which is common in isothermal high-speed GC, results in a considerable loss in total peak capacity with remarkably little reduction in analysis time.  相似文献   

2.
A procedure is described for the preparation of high-performance etched silicon columns for gas chromatography. Rectangular channels, 150 mum wide by 240 mum deep are fabricated in silicon substrates by gas-phase reactive ion etching. A 0.1-0.2-mum-thick film of dimethyl polysiloxane stationary phase is deposited on the channel walls by filling the channel with a dilute solution in 1:1 n-pentane and dichloromethane and pumping away the solvent. A thermally activated cross-linking agent is used for in situ cross-linking. A 3-m-long microfabricated column generated approximately 12 500 theoretical plates at optimal operating conditions using air as carrier gas. A kinetic model for the efficiency of rectangular cross-section columns is used to evaluate column performance. Results indicate an additional source of gas-phase dispersion beyond longitudinal diffusion and nonequilibrium effects, probably resulting from numerous turns in the gas flow path through the channel. The columns are thermally stable to at least 180 degrees C using air carrier gas. Temperature programming is demonstrated for the boiling point range from n-C5 to n-C12. A 3.0-m-long column heated at 10 degrees C/min obtains a peak capacity of over 100 peaks with a resolution of 1.18 and a separation time of approximately 500 s. With a 0.25-m-long column heated at 30 degrees C/min, a peak capacity of 28 peaks is obtained with a separation time of 150 s. Applications are shown for the analysis of air-phase petroleum hydrocarbons and the high-speed analysis of chemical warfare agent and explosive markers.  相似文献   

3.
Columns were fabricated in silicon substrates by deep reactive-ion etching. The channels were sealed with a glass wafer anodically bonded to the silicon surface. Heaters and temperature sensors were fabricated on the back side of each column chip. A microcontroller-based temperature controller was used with a PC for temperature programming. Temperature programming, with channel lengths of 3.0 and 0.25 m, is described. The 3.0-m-long channel was fabricated on a 3.2 cmx3.2 cm chip. Four columns were fabricated on a standard 4-in. silicon wafer. The 0.25-m-long channel was fabricated on a 1.1 cmx1.1 cm chip, and approximately 40 columns could be fabricated on a 4-in. wafer. All columns were coated with a nonpolar poly(dimethylsiloxanes) stationary phase. A static coating procedure was employed. The 3.0-m-long column generated about 12000 theoretical plates, and the 0.25-m-long channel generated about 1000 plates at optimal carrier gas velocity. Linear temperature ramps as high as 1000 degrees C/min when temperature programmed from 30 to 200 degrees C were obtained with the shorter column. With the 0.25-m-long column, normal alkanes from n-C5 through n-C15 were eluted in less than 12 s using a temperature ramp rate of 1000 degrees C/min. Temperature uniformity over the column chip surface was measured with infrared imaging. A variation of about 2 degrees C was obtained for the 3.0-m-long channel. Retention time reproducibility with temperature programming typically ranged from +/-0.15% to +/-1.5%. Design of the columns and the temperature controller are discussed. Performance data are presented for the different columns lengths.  相似文献   

4.
Smith H  Sacks RD 《Analytical chemistry》1998,70(23):4960-4966
High-speed gas chromatograms are obtained by the use of relatively short lengths of capillary column operated at relatively large carrier gas flow rates. This approach is difficult for more complex mixtures because of the reduced peak capacity available with shorter columns. A solution to this problem is the use of tunable column ensembles consisting of the series (tandem) combination of a polar and a nonpolar column. By adjusting the pressure at the junction point between the columns, the selectivity of the ensemble can be adjusted within the limits imposed by the individual columns. For mixtures representing a relatively large boiling point range and containing more than ~20 components, high-speed, isothermal separations are less effective. These limitations are significantly reduced by combining fast temperature programming with selectivity programming. Selectivity programming is obtained by changing the pressure at the column junction point one or more times during the course of an analysis. In the work described here, the column ensemble temperature and the junction pressure are initially set to give a high-quality separation of the earliest eluting components. After these components have eluted, a linear temperature ramp of ~35 °C/min is initiated. As the temperature increases, the pressure is adjusted to change the selectivity and thus facilitate the separation of groups of components as they migrate through the column ensemble. Using this approach, a mixture of 30 purgeable organic compounds is separated in less than 2.5 min.  相似文献   

5.
High-speed GC and GC/time-of-flight MS of lemon and lime oil samples   总被引:1,自引:0,他引:1  
The high-speed GC separation and MS characterization of lime oil and lemon oil samples using programmable column selectivity and time-of-flight mass spectrometry is described. The volatile essential oils are separated on a series-coupled (tandem) column ensemble consisting of a polar trifluoropropylmethyl polysiloxane column and a nonpolar 5% phenyl dimethyl polysiloxane column. Both columns are 7 m long. A 50 degrees C/min linear temperature ramp from 50 to 200 degrees C is used, giving an analysis time of approximately 2.5 min. A time-of-flight MS with time array detection and automated peak finding and characterization software was used to identify 50 components in lime oil samples and 25 components in lemon oil samples. Despite numerous cases of extensive peak overlap, spectral deconvolution software was very successful in the characterization of most overlapping peaks. For cases where a more complete chromatographic separation is desirable, the tandem column ensemble is operated in the first-column stop-flow mode to enhance the separation of selected overlapping clusters of peaks. A valve between the junction point of the tandem column ensemble and a source of carrier gas at the GC inlet pressure is opened for 2-5-s intervals to stop the flow of carrier gas in the first column. This is used to increase the separation of target component groups that overlap in the ensemble chromatogram without first-column stop-flow operation. This procedure is used to isolate the peak for limonene, the largest peak in the analytical-ion chromatogram of both the lime and lemon oil samples.  相似文献   

6.
A capillary-dimension on-line sorption trap is used to preconcentrate organic vapors from large-volume air samples and inject the organic compounds into the separation column as a relatively narrow vapor plug. The multibed trap is made from a Co-Ni alloy for resistive heating during sample desorption and uses four different carbon-based adsorption materials that are graded from weakest to strongest in the direction of the sample gas flow during sample preconcentration. The flow direction then is reversed for sample injection. The multibed design and the flow direction reversal during thermal desorption prevents the higher-boiling-point compounds in the sample from reaching the strongest adsorbing material, from which they would be difficult to desorb as a sufficiently narrow vapor plug. A relatively high current pulse is used to rapidly achieve trap temperatures in the 200-400 degrees C temperature range, and a lower current is used to maintain the maximum temperature for several seconds in order to ensure injection of the entire trapped sample. A temperature of 350 degrees C is reached after degrees 1.5 s, and injection plug widths are typically in the range of 0.6-1.3 s. Plots of peak area versus sample collection time show excellent linearity and shot-to-shot relatively standard deviations of about +/- 5%. Performance data are presented for a mixture of 42 volatile compounds spanning a volatility range from n-C5 to n-C12. Data are presented for injection plug width and shape for both polar and nonpolar compounds. Decomposition of thermally labile compounds is observed for injection temperatures above 300 degrees C.  相似文献   

7.
Whiting J  Sacks R 《Analytical chemistry》2003,75(10):2215-2223
A series-coupled ensemble of a nonpolar dimethyl polysiloxane column and a polar trifluoropropylmethyl polysiloxane column with independent at-column heating is used to obtain pulsed heating of the second column. For mixture component bands that are separated by the first column but coelute from the column ensemble, a temperature pulse is initiated after the first of the two components has crossed the column junction point and is in the second column, while the other component is still in the first column. This accelerates the band for the first component. If the second column cools sufficiently prior to the second component band crossing the junction, the second band experiences less acceleration, and increased separation is observed for the corresponding peaks in the ensemble chromatogram. High-speed at-column heating is obtained by wrapping the fused-silica capillary column with resistance heater wire and sensor wire. Rapid heating for a temperature pulse is obtained with a short-duration linear heating ramp of 1000 degrees C/min. During a pulse, the second-column temperature increases by 20-100 degrees C in a few seconds. Using a cold gas environment, cooling to a quiescent temperature of 30 degrees C can be obtained in approximately 25 s. The effects of temperature pulse initiation time and amplitude on ensemble peak separation and resolution are described. A series of appropriately timed temperature pulses is used to separate three coeluting pairs of components in a 13-component mixture.  相似文献   

8.
Peak capacity production (i.e., peak capacity per separation run time) is substantially improved for gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) and applied to the fast separation of complex samples. The increase in peak capacity production is achieved by selecting appropriate experimental conditions based on theoretical modeling of on-column band broadening, and by reducing the injection pulse width. Modeling to estimate the on-column band broadening from experimental parameters provided insight for the potential of achieving GC separations in the absence of off-column band broadening, i.e., the additional band broadening not due to the on-column separation process. To optimize GC-TOFMS separations collected with a commercial instrumental platform, off-column band broadening from injection and detection needed to be significantly reduced. Specifically for injection, a commercially available thermal modulator is adapted and applied (referred to herein as thermal injection) to provide a narrow injection pulse, while the TOFMS provided a data collection rate of 500 Hz, initially averaged to 100 Hz for data storage. The use of long, relatively narrow open tubular capillary columns and a 30 °C/min programming rate were explored for GC-TOFMS, specifically a 20 m, 100 μm inner diameter (i.d.) capillary column with a 0.4 μm film thickness to benefit column capacity, operated slightly below the optimal average linear gas velocity (at ~2 mL/min, due to the flow rate constraint of the TOFMS). Standard autoinjection with a 1:100 split resulted in an average peak width of ~1.2 s, hence a peak capacity production of 50 peaks/min. Metabolites in the headspace of urine were sampled by solid-phase microextraction (SPME), followed by thermal injection and a ~7 min GC separation (with a ~6 min separation time window), producing ~660 ms peak widths on average, resulting in a total peak capacity of ~550 peaks (at unit resolution) and a peak capacity production of ~90 peaks/min (~2-fold improvement relative to standard autoinjection with the 1:100 split). This total peak capacity production achieved is equivalent to, or greater than, that currently utilized in metabolomics studies using GC/MS, but with much slower separations, on the order of 40 to 60 min, corresponding to a 5-fold or greater GC/MS analysis throughput rate.  相似文献   

9.
A model and a spreadsheet algorithm is described for the prediction of solute-band migration trajectories in a series-coupled combination of two capillary GC columns with pressure-tunable and -programmable selectivity and operated under temperature-programmed conditions. The model takes into account the acceleration of carrier gas in the two columns as a result of decompression effects, the deceleration of carrier gas as a result of the increase in viscosity during temperature programming, the decrease in solute retention factors with increasing temperature during the temperature program, the differences in retention factors for the two columns, and programmed changes in the carrier-gas flow rates in the two columns during selectivity programming. In the model, the 20-meter-long column ensemble is divided into 1-cm-long intervals, and the carrier-gas velocity and column temperature are assummed to be constant in any interval. Migration times for all of the mixture solutes are computed for each column interval, and the solute-band positons in the column ensemble are plotted versus the running sum of these migration times to obtain band trajectory plots. The sum of these migration times for all 2,000 intervals gives the ensemble retention times for the solutes. Isothermal retention factors (k) for all of the mixture components at various column temperatures (Tc) are used as imput to the algorithm. Slope and intercept values of In(k) vs 1/Tc plots are used in the algorithm. General features of the model are tested using a mixture of C12-C24 normal alkanes. A mixture of polar and nonpolar compounds is used to test the utility of the model for the predicition of peak separations and retention times with pressure-tunable and -programmable selectivity. Good agreement is observed in all cases.  相似文献   

10.
The key to rapid temperature programmed separations with gas chromatography are a fast, low-volume injection and a short microbore separation column with fast resistive heating. One of the major problems with the reduction of column dimensions for micro gas chromatography is the availability of a stationary phase that provides good separation performance. In this report, we present the first integration of single-wall carbon nanotubes (SWNTs) as a stationary phase into 100 mum x 100 mum square and 50-cm-long microfabricated channels. The small size of this column with integrated resistive heater and the robustness of the SWNT phase allow for fast temperature programming of up to 60 degrees C/s. A combination of the fast temperature programming and the narrow peak width of small-volume injections that can be obtained from a high-speed, dual-valve injection system allows for rapid separations of gas mixtures. We demonstrate highly reproducible separations of four-compound test mixtures on these columns in less than 1 s using fast temperature programming.  相似文献   

11.
Tetrapod-shape ZnO nanostructures are formed on Si substrates by vapor phase transportation method. The effects of two important growth parameters, growth temperature and VI/II ratio, are investigated. The growth temperature is varied in the range from 600 degrees C to 900 degrees C to control the vapor pressure of group II-element and the formation process of nanostructures. VI/II ratio was changed by adjusting the flux of carrier gas which affects indirectly the supplying rate of group VI-element. From the scanning electron microscopy (SEM), systematic variation of shape including cluster, rod, wire and tetrapod was observed. ZnO tetrapods, formed at 800 degrees C under the carrier gas flux of 0.5 cc/mm2 min, show considerably uniform shape with 100 nm thick and 1-1.5 microm long legs. Also stoichiometric composition (O/Zn - 1) was observed without any second phase structures. While, the decrease of growth temperature and the increase of carrier gas flux, results in the irregular shaped nanostructures with non-stoichiometric composition. The excellent luminescence properties, strong excitonic UV emission at 3.25 eV without deep level emission, indicate that the high crystalline quality tetrapod structures can be formed at the optimized growth conditions.  相似文献   

12.
Sol-gel capillary microextraction (sol-gel CME) is introduced as a viable solventless extraction technique for the preconcentration of trace analytes. To our knowledge, this is the first report on the use of sol-gel-coated capillaries in analytical microextraction. Sol-gel-coated capillaries were employed for the extraction and preconcentration of a wide variety of polar and nonpolar analytes. Two different types of sol-gel coatings were used for extraction: sol-gel poly(dimethylsiloxane) (PDMS) and sol-gel poly(ethylene glycol) (PEG). An in-house-assembled gravity-fed sample dispensing unit was used to perform the extraction. The analysis of the extracted analytes was performed by gas chromatography (GC). The extracted analytes were transferred to the GC column via thermal desorption. For this, the capillary with the extracted analytes was connected to the inlet end of the GC column using a two-way press-fit fused-silica connector housed inside the GC injection port. Desorption of the analytes from the extraction capillary was performed by rapid temperature programming (at 100 degrees C/min) of the GC injection port. The desorbed analytes were transported down the system by the helium flow and further focused at the inlet end of the GC column maintained at 30 degrees C. Sol-gel PDMS capillaries were used for the extraction of nonpolar and moderately polar compounds (polycyclic aromatic hydrocarbons, aldehydes, ketones), while sol-gel PEG capillaries were used for the extraction of polar compounds (alcohols, phenols, amines). The technique is characterized by excellent reproducibility. For both polar and nonpolar analytes, the run-to-run and capillary-to-capillary RSD values for GC peak areas remained under 6% and 4%, respectively. The technique also demonstrated excellent extraction sensitivity. Parts per quadrillion level detection limits were achieved by coupling sol-gel CME with GC-FID. The use of thicker sol-gel coatings and longer capillary segments of larger diameter (or capillaries with sol-gel monolithic beds) should lead to further enhancement of the extraction sensitivity.  相似文献   

13.
Vacuum-outlet GC with atmospheric-pressure air as the carrier gas is implemented at outlet pressures up to 0.8 atm using a low-dead-volume polymer-coated surface acoustic wave (SAW) detector. Increases in the system outlet pressure from 0.1 to 0.8 atm lead to proportional increases in detector sensitivity and significant increases in column efficiency. The latter effect arises from the fact that optimal carrier gas velocities are lower in air than in more conventional carrier gases such as helium or hydrogen due to the smaller binary diffusion coefficients of vapors in air. A 12-m-long, 0.25-mm-i.d. tandem column ensemble consisting of 4.5-m dimethyl polysiloxane and 7.5-m trifluoropropylmethyl polysiloxane operated at an outlet pressure of 0.5 atm provides up to 4 x 10(4) theoretical plates and a peak capacity of 65 (resolution, 1.5) for a 3-min isothermal analysis. At 30 degrees C, mixtures of vapors ranging in vapor pressure from 8.6 to 76 Torr are separated in this time frame. The SAW detector cell has an internal volume of < 2 microL, which allows the use of higher column outlet pressures with minimal dead time. The sensor response is linear with solute mass over at least 2-3 decades and provides detection limits of 20-50 ng for the vapors tested. The combination of atmospheric-pressure air as carrier gas, modest operating pressures, and SAW sensor detection is well-suited for field instrumentation since it eliminates the need for support gases, permits smaller, low-power pumps to be used, and provides sensitivity to a wide range of vapor analytes.  相似文献   

14.
Preparation and sorption properties of materials from paper sludge   总被引:2,自引:0,他引:2  
Three materials were prepared from paper sludge (PS) using different treatment processes and their sorption abilities for phosphate and methylene blue (MB) were determined. The samples were a powder sample prepared by heating PS in air (sample C), a pellet prepared by grinding, forming and heating PS in air (sample G) and a powder prepared by physical activation of PS in flowing wet nitrogen (sample A). The three samples were heated at 600-900 degrees C for 6h. On heating at 700-800 degrees C, the organic fibers, limestone (CaCO3), kaolinite (Al2Si2O5(OH)4) and talc (Mg3Si4O10(OH)2) in the original PS were converted to amorphous CaO-Al2O3-SiO2 (CAS) and talc in sample C, while CAS was formed in sample G and activated carbon, CAS and talc was formed in sample A. On heating at 900 degrees C the CAS converted to gehlenite (Ca2Al2SiO7) and anorthite (CaAl2Si2O8). The specific surface areas (SBET) of the three samples achieved maximum values of 23, 37 and 70 m2/g upon heating at 700, 600 and 600 degrees C, respectively. The SBET value of the activated sample A was distinctly lower than usually reported for activated carbon. The samples C, G and A achieved maximum phosphate sorption capacities of 2.04, 1.38 and 1.70 mmol/g, calculated from the Langmuir model, upon heating at 700, 700 and 800 degrees C, respectively. The maximum sorption capacity for phosphate in sample C is attributed to the sorption by CAS, namely, adsorption on the alumina component and precipitation as Ca-phosphates. The MB multifunctional sorption capacity of sample A was 0.11 mmol/g. The phosphate and MB sorption rates show better correlation with a pseudo-second order model than with other models.  相似文献   

15.
The use of narrow bore LC capillaries operated at ultralow flow rates coupled with mass spectrometry provides a desirable convergence of figures of merit to support high-performance LC-MS/MS analysis. This configuration provides a viable means to achieve in-depth protein sequence coverage while maintaining a high rate of data production. Here we explore potential performance improvements afforded by use of 25 μm × 100 cm columns fabricated with 5 μm diameter reversed phase particles and integrated electrospray emitter tips. These columns achieve a separation peak capacity of ≈750 in a 600-min gradient, with average chromatographic peak widths of less than 1 min. At room temperature, a pressure drop of only ≈1500 psi is sufficient to maintain an effluent flow rate of ≤10 nL/min. Using mouse embryonic stem cells as a model for complex mammalian proteomes, we reproducibly identify over 4000 proteins across duplicate 600 min LC-MS/MS analyses.  相似文献   

16.
Grall AJ  Sacks RD 《Analytical chemistry》2000,72(11):2507-2513
A pressure-tunable ensemble of two series-coupled capillary columns operated at subambient outlet pressure is described. The ensemble consists of a 4.5-m length of nonpolar dimethyl polysiloxane column followed by a 7.5-m length of polar trifluoropropylmethyl polysiloxane column. Air at an inlet pressure of 1.0 atm is used as carrier gas, and a vacuum pump is used to pull the carrier gas and injected samples through the column ensemble. Detection is provided by a photoionization detector operated at a pressure of 0.3 psia. Ensemble selectivity is controlled by means of an electronic pressure controller located at the junction point between the columns. The minimum pressure step size is 0.1 psi, and 50 different set-point pressures can be used, each one producing a different pattern of peaks eluting from the column ensemble. Measured ensemble retention factors for a set of target compounds produce straight lines when plotted versus the ratio of the calculated holdup time of the first column in the ensemble to the total ensemble holdup time. A component band trajectory model is used to describe the effects of ensemble junction-point pressure on the elution patterns generated by the ensemble. Ensemble retention times predicted by the model are in good agreement with values obtained from chromatograms. The use of on-the-fly set-point pressure changes during a separation (selectivity programming) is demonstrated and used to improve the quality of the separation of a 19-component test mixture.  相似文献   

17.
Recent development of CaF2:Cu (the most sensitive material for radiation dosimetry) exhibiting a TL glow peak around 270 degrees C similar to that of CaF2:Mn has made it attractive to study the influence of heating rate on the response of CaF2 based TLDs. Influence of heating rate on CaF2:Mn (known to reduce the response with increasing heating rate) was confirmed in view of the reported controversy about other TLDs. Responses of TL glow peaks around 270 degrees C in CaF2:Cu, CaF2:Tm, CaF2:Dy and CaF2:Mn were studied. Except CaF2:Mn, no other CaF2 based TLD exhibited a reduction in response with increasing heating rate. On the contrary, in some cases a small increase (10-15%) was noted with increasing heating rate from 1 degrees Cs(-1) to 50 degrees Cs(-1). The shape and the position of the glow peak and the parameters derived from the shape of the glow curve appear to have no relation to reduction of TL efficiency at higher heating rates. Apart from the increased probability of non-radiative transitions at higher temperatures, the observed effects have been assigned to the effect of heating rate on the migration of charge carriers released during the TL readout.  相似文献   

18.
This paper reports on the results of a heating profile analysis using a commercial routine read-out system with non-contact hot nitrogen heating, using linear heating gas profiles. Glow curves of TLD-100 were analysed for different linear heating gas rates from 1 degree C x s(-1) to 30 degrees C x s(-1). The analysis of the individual peak maxima (Peak 2-5) leads to an approximation of the real heating profile in the TL detector. It was found that the real heating profile deviates strongly from linearity, and that the temperature lag between the heating gas and the detector reaches values up to some tens of degrees C. The consequences of this non-linearity, with respect to the resulting glow curves, are discussed in this paper. These results lead to a better understanding of the shape of routine TL glow curves and help to improve the use of glow curves analysis in routine services. In addition, a simple procedure is described which allows calculation of the real heating profile based on the heating gas temperature profile. This model shows a very good match between experimental data and calculated values.  相似文献   

19.
With comprehensive two-dimensional supercritical fluid and fast, independent temperature-programmed gas chromatography (SFCxGC), a polar column was used in the first dimension to achieve group-type analysis. The eluent of this separation was repetitively sampled and transferred to a fast, resistively heated gas chromatograph to obtain the boiling point distribution over the entire polarity separation. The SFC was operated isothermally with stopped flow to provide a sufficient time span for the GC analysis. The GC analysis had a typical cycle time of 1 min for the system demonstrated here. During this time, the GC column was independently heated at a rate of 450 degrees C/min to 250 degrees C and actively cooled again to -50 degrees C before the next GC injection took place. The analysis of petrochemical samples is presented to illustrate the technique.  相似文献   

20.
Rapid, comprehensive two-dimensional gas chromatographic (GC × GC) separations by use of a microfabricated midpoint thermal modulator (μTM) are demonstrated, and the effects of various μTM design and operating parameters on performance are characterized. The two-stage μTM chip consists of two interconnected spiral etched-Si microchannels (4.2 and 2.8 cm long) with a cross section of 250 × 140 μm(2), an anodically bonded Pyrex cap, and a cross-linked wall coating of poly(dimethylsiloxane) (PDMS). Integrated heaters provide rapid, sequential heating of each μTM stage, while a proximate, underlying thermoelectric cooler provides continual cooling. The first-dimension column used for GC × GC separations was a 6 m long, 250 μm i.d. capillary with a PDMS stationary phase, and the second-dimension column was a 0.5 m long, 100 μm i.d. capillary with a poly(ethylene glycol) phase. Using sets of five to seven volatile test compounds (boiling point ≤174 °C), the effects of the minimum (T(min)) and maximum (T(max)) modulation temperature, stage heating lag/offset (O(s)), modulation period (P(M)), and volumetric flow rate (F) on the quality of the separations were evaluated with respect to several performance metrics. Best results were obtained with a T(min) = -20 °C, T(max) = 210 °C, O(s) = 600 ms, P(M) = 6 s, and F = 0.9 mL/min. Replicate modulated peak areas and retention times were reproducible to <5%. A structured nine-component GC × GC chromatogram was produced, and a 21 component separation was achieved in <3 min. The potential for creating portable μGC × μGC systems is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号