首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inorganic ceramics such as calcium copper titanate, CaCu3Ti4O12 (CCTO) and barium titanate (BaTiO3) were used as fillers to produce epoxy thin film composites for capacitor application. The effects of filler types and loading range on the dielectric, tensile, morphology, and thermal properties of the epoxy thin film composites were determined. Results showed that epoxy thin film composites with 20 vol% filler loading of CCTO and BaTiO3 showed good dielectric properties, thermal stability, and thermal conductivity. However, the tensile properties of the CCTO/epoxy thin film composite was reduced as the filler loading increased. On the other hand, the tensile properties of BaTiO3/epoxy thin film composite improved as the filler loading increased. Hybrid fillers CCTO and BaTiO3 filled epoxy composites were fabricated and the effect of hybrid fillers on the dielectric properties and morphology of the epoxy thin film composites were investigated. Results indicated that positive hybrid effect in dielectric constant and dielectric loss showed by the hybrid composites.  相似文献   

2.
The possibility of obtaining relatively high dielectric constant polymer–ceramic composite by incorporating the giant dielectric constant material, CaCu3Ti4O12 (CCTO) in a Poly(vinylidene fluoride) (PVDF) polymer matrix by melt mixing and hot pressing process was demonstrated. The structure, morphology and dielectric properties of the composites were characterized using X-ray diffraction, Thermal analysis, scanning electron microscope, and impedance analyzer. The effective dielectric constant (εeff) of the composite increased with increase in the volume fraction of CCTO at all the frequencies (100 Hz–1 MHz) under study. The dielectric loss did not show any variation up to 40% loading of CCTO, but showed an increasing trend beyond 40%. The room temperature dielectric constant as high as 95 at 100 Hz has been realized for the composite with 55 vol.% of CCTO, which has increased to about 190 at 150 °C. Theoretical models like Maxwell’s, Clausius–Mossotti, Effective medium theory, logarithmic law and Yamada were employed to rationalize the dielectric behaviour of the composite and discussed.  相似文献   

3.
Thermal and dielectric properties of polymers reinforced with micro-sized aluminium nitride (AlN) particles have been studied. A set of epoxy–AlN composites, with filler content ranging from 0 to 25 vol% is prepared by hand lay-up technique. With similar filler loading, polypropylene -AlN composites are fabricated by compression molding technique. Density (ρc), effective thermal conductivity (keff), glass transition temperature (Tg), coefficient of thermal expansion (CTE) and dielectric constant (εc) of these composites are measured experimentally. The various experimental data were interpreted using appropriate theoretical models. Incorporation of AlN in both the resin increases the keff and Tg whereas CTE of composite decreases favourably. The dielectric constant of the composite also found to get modified with filler content. With improved thermal and modified dielectric characteristics, these AlN filled polymer composites can possibly be used for microelectronics applications.  相似文献   

4.
Polymer/ceramic composites are the most promising embedded capacitor material for organic substrates application. Predicting the effective dielectric constant of polymer/ceramic composites is very important for design of composite materials. In this paper, we measured the dielectric constant of epoxy/BaTiO3 composite embedded capacitor films with various BaTiO3 particles loading for 5 different sizes BaTiO3 powders. Experimental data were fitted to several theoretical equations to find the equation useful for the prediction of the effective dielectric constant of polymer/ceramic composites and also to estimate the dielectric constant of BaTiO3 powders. The Lichtenecker equation and the Jayasundere-Smith equation were useful for the prediction of the effective dielectric constant of epoxy/BaTiO3 composites. And calculated dielectric constants of the BaTiO3 powders were in the range of 100 to 600, which were lower than the dielectric constant of BaTiO3 bulk ceramics probably due to the presence of voids or pores.  相似文献   

5.
The minerals silica, mica, and calcium carbonate (CaCO3) were used as fillers to produce epoxy thin film composites for capacitor application. The effects of filler loading and type on the morphology, tensile, dielectric, and thermal properties of the epoxy thin film composites were determined. Results showed that epoxy thin films with 20 vol% filler loading showed good dielectric properties, thermal conductivity, and thermal stability. However, the tensile properties of the thin films were reduced as the filler loading was increased due to brittleness. Dielectric constant and dielectric loss of epoxy/inorganic composite films generally increased with increasing mineral filler loading. Meanwhile, the presence of mineral filler improved the thermal stability of the thin film composites. The highest dielectric constant of 5.75 with 20 vol% filler loading at a frequency of 1 MHz was exhibited by the epoxy/CaCO3 composite, followed by epoxy/mica and epoxy/silica. Therefore, the epoxy/CaCO3 composite is the most potential candidate for capacitor application. Moreover, precipitated CaCO3 provided better tensile properties and slightly improved the dielectric properties compared with mineral CaCO3.  相似文献   

6.
Because of the fabricability of polymer and excellent dielectric properties of ceramics, ceramic-polymer composites have been investigated widely for embedded capacitors which can improve electric performance greatly. In order to obtain further application of composite, the embedded capacitors with three-layer sandwich structure containing the BaTiO3/epoxy composites as dielectric layer and copper foil as electrodes were fabricated. The dielectric properties are improved by preventing the defect in dielectric layer through lamination process. Our results show that the capacitors exhibit high dielectric permittivity (ε = 20), low dielectric loss (0.01) at 103 Hz from 40 to 100 °C and high breakdown strength (24 kV/mm), which indicate that the lamination is a promising process for embedded capacitor fabrication and BaTiO3/epoxy composites have potential for high-performance embedded capacitors application in field of microelectronics.  相似文献   

7.
Phase-pure calcium copper titanate (CaCu3Ti4O12, CCTO) ceramic particles were synthesized via a sol–gel route. The CCTO was treated by bis[3-(triethoxysilyl)propyl]tetrasulfide (Si69) to give CCTO@Si69. The dielectric composites based on CCTO (or CCTO@Si69) and polyvinylidene fluoride (PVDF) were molded with desirable dielectric properties by mechanical mixing process and hot-pressing. The structures of CCTO and CCTO@Si69 were investigated by scanning electron microscopy (SEM) energy spectrum, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The stretching vibration of SO at 1096 cm−1 in FTIR is an indication that chemical bond was formed between Si69 and CCTO. The influence of Si69 on the preparation and the dielectric properties of CCTO/PVDF dielectric composites were discussed. When the content of Si69 was 0.1 mL (relative to 1 g of CCTO), the dielectric constant (ε) (at a frequency of 1 kHz) of CCTO@Si69/PVDF composites reached the maximum value of 84, this value is 5.25 times that of an equal amount of CCTO of CCTO/PVDF composites (ε  16). The CCTO/PVDF and CCTO@Si69/PVDF composites had very stable dielectric properties over a wide range of temperatures (20–160 °C). These composites can be applied as high-energy–density capacitors in electronic and electrical engineering fields.  相似文献   

8.
将CCTO(CaCu3Ti4O12)与NiCuZn铁氧体进行复合,系统地研究了组分变化对这种新型磁电复合材料的烧结性能、晶相结构、显微结构和磁电性能的影响。随后,为了实现复合材料的低温烧结以及综合考虑复相陶瓷的磁电性能,选取80%(质量分数,下同)NiCuZn铁氧体/20%CCTO组分,以BBSZ(Bi2O3-H3BO3-SiO2-ZnO)玻璃作为助熔剂,研究了CCTO/NiCuZn铁氧体基复合材料的烧结行为和磁电性能。结果表明,掺杂BBSZ后,900℃下烧结的所有样品的密度均达到了复相陶瓷理论密度的95%,且复相陶瓷的介电常数和磁导率在1~30 MHz范围内均不依赖于频率的变化。在10 MHz的频率下,当BBSZ的含量从0增加到3%时,复相陶瓷磁导率μ从13.2增加到47.9,磁损耗tanδμ从0.022下降到0.017,同时,样品的谐振频率从109Hz左右移动到3.2×108Hz。相应地,复相陶瓷的介电常数ε从9.2增加到16,介电损耗tanδε从0.069下降到0.012。这一优异的整体性能使其有望实际应用。  相似文献   

9.
10.
High performance composites based on CaCu3Ti4O12 (CCTO) and cyanate ester (CE) were successfully developed with desirable dielectric properties (high dielectric constant and low dissipation factor), outstanding thermal resistance and decreased curing temperature for embedded capacitors. CCTO was treated by γ-aminopropyl triethoxy silane, coded as CCTO(KH550), to investigate the interfacial effects on properties of composites. The addition of CCTO or CCTO(KH550) can significantly reduce the whole curing temperature of CE, while CCTO exhibits a higher catalytic capability than CCTO(KH550). Compared with cured CE resin, two kinds of composites exhibit greatly improved thermal resistance and real permittivity, meanwhile the dissipation factor is still very low. Because the interfacial polarization leads to the dependence of dielectric properties on the frequency and temperature, the improvement of interfacial adhesion for composites is beneficial to reduce the variation of dielectric properties with temperature and frequency, and thus improve the reliability of dielectric materials in applications.  相似文献   

11.
The interlaminar shear behavior of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid composites was studied with short beam shear bending test. Random glass fiber (R)/epoxy means chopped fiber composite having short discontinuous fiber randomly dispersed in epoxy matrix. The effect of stacking sequence and unidirectional glass fiber relative volume fraction (VfU/VfT) on the interlaminar shear strength (ILSS) of the manufactured composites has been investigated experimentally and theoretically. The laminates were fabricated by hand lay-up technique with 5 plies. Two non-hybrid composite laminates [R]5 and [U]5 were fabricated using the same fabrication technique for the comparison purpose. The average thickness of the manufactured laminates is 5.5 ± 0.2 mm and the total fiber volume fraction (VfT) is 37%. Failure modes of all specimens were investigated. Experimental results indicated that the ILSS of [U]5 is higher than those of hybrid and [R]5 composite. Hybrid composites have higher ILSS than that of random composites. The stacking sequence and (VfU/VfT) ratio have a detectable effect on ILSS of the investigated composites.  相似文献   

12.
Na0.5Bi0.5Cu3Ti4O12 (NBCTO)/poly(vinylidene fluoride) (PVDF) composites with various NBCTO volume fractions were prepared via solution mixing and hot pressing process. The structure, morphology, and dielectric properties of the composites were characterized with X-ray diffraction (XRD), thermal-gravimetric analysis (TGA), scanning electron microscope (SEM), and broadband dielectric spectrometer. The dielectric constant (ε) and dielectric loss (tan δ) of the composites were both found to increase with increasing NBCTO volume fraction within the frequency range of 1–106 Hz at room temperature. Relatively high dielectric constant of 79.8 and low loss of 0.21 at 1 kHz were obtained for the NBCTO/PVDF composite with 50 vol% NBCTO. Additionally, theoretical models like Logarithmic mixture rule, Maxwell–Garnet, Effective medium theory, and Yamada model were also employed to predict the dielectric constant of these composites. The values obtained by the EMT model are in close agreement with the experimental values.  相似文献   

13.
Hollow glass microsphere (HGM)–filled epoxy composites, with filler content ranging from 0 to 51.3 vol.%, were prepared in order to modify the dielectric properties of the epoxy. The results showed that the dielectric constant (Dk) and dielectric loss (Df) of the composites decreased simultaneously with increasing HGM content, which was critical for the provision of superior high-frequency device performance. Other properties of the composite, such as the coefficient of thermal expansion (CTE) and the glass transition temperature (Tg), were also improved. The improvement in these properties was related to strong interaction between the HGM and epoxy, which was indicated by the formation of an interphase between the HGM and epoxy-matrix. It was unsatisfactory in this study that the thermal conductivity of the composites also decreased with HGM content. In order to obtain relatively high thermal conductivity and a low dielectric constant simultaneously, this paper suggests further adding other filler.  相似文献   

14.
A study of the effect of the presence of BIT (Bi4Ti3O12) in the dielectric and optical properties of the CaCu3Ti4O12 (CCTO) is presented. The samples were prepared by the solid state procedure. Mechanical alloying followed by the solid state procedure has been used successfully to produce powders of CaCu3Ti4O12 (CCTO) and BIT (Bi4Ti3O12) to be used in the composites. We also look at the effect of the grain size of the BIT and CCTO in the final properties of the composite. The samples were studied using X-Ray diffraction, scanning electron microscopy (SEM), Raman and infrared spectroscopy. We also did a study of the dielectric function K and dielectric loss of the samples. The role played by the grain size of CCTO and BIT in the dielectric constant and structural properties of the substrates are discussed. For frequencies below 10 MHz the K value presented by the CCTO100 sample is always higher than the K value presented by the BIT100 sample. At 100 Hz the value of K 1900 for the CCTO100 sample and 288 for the BIT100 sample. However for the composite sample one has an unexpected result. The dielectric constant is higher for all the frequencies under study. At 100 Hz the value of the K is around 10.000 for the BIT10 sample. Which is more than one order bigger compared to the CCTO100 value for the same frequency. Therefore, these measurements confirm the potential use of such materials for small high dielectric planar devices. These composites are also attractive for capacitor applications and certainly for microelectronics, microwave devices (cell mobile phones for example), where the miniaturization of the devices is crucial.  相似文献   

15.
Atomistic and mesoscale simulations were conducted to estimate the effect of the diameter and weight fraction of single walled carbon nanotubes (SWCNTs) on mechanical behaviour and glass transition temperature (Tg) of SWCNTs reinforced epoxy resin composites. Atomistic periodic systems of epoxy resin and epoxy resin/SWCNTs were built with different weight ratios and were subject of an extensive multistage equilibration procedure. Molecular dynamics simulations were used to estimate glass transition temperature, Young modulus and solubility parameter of epoxy resin and epoxy resin/SWCNTs composites. Dissipative particle dynamics method and Flory–Huggins theory was employed to predict epoxy resin/SWCNTs morphologies. The results show that incorporation of SWCNTs with diameters ranging from 10 to 14 ? has beneficial effect on mechanical integrity and Tg. Overall, the agreement between predicted material properties and experimental data in the literature is very satisfactory.  相似文献   

16.
《Composites Part B》2013,44(8):3491-3496
Atomistic and mesoscale simulations were conducted to estimate the effect of the diameter and weight fraction of single walled carbon nanotubes (SWCNTs) on mechanical behaviour and glass transition temperature (Tg) of SWCNTs reinforced epoxy resin composites. Atomistic periodic systems of epoxy resin and epoxy resin/SWCNTs were built with different weight ratios and were subject of an extensive multistage equilibration procedure. Molecular dynamics simulations were used to estimate glass transition temperature, Young modulus and solubility parameter of epoxy resin and epoxy resin/SWCNTs composites. Dissipative particle dynamics method and Flory–Huggins theory was employed to predict epoxy resin/SWCNTs morphologies. The results show that incorporation of SWCNTs with diameters ranging from 10 to 14 Ǻ has beneficial effect on mechanical integrity and Tg. Overall, the agreement between predicted material properties and experimental data in the literature is very satisfactory.  相似文献   

17.
Low-observable radomes are usually made of E-glass/epoxy composite due to its low dielectric constant which is necessary not to interfere electromagnetic (EM) wave transmission characteristics. Since aramid fibers have lower dielectric constant and higher strength than those of E-glass fiber, aramid fiber radome structures may have better the EM transmission and mechanical characteristics than those of E-glass/epoxy radomes. In this work, the low-observable radome was constructed with a sandwich construction composed of aramid/epoxy composites faces, foam core and Frequency Selective Surface (FSS) which had the abilities of transmitting EM waves selectively in the X-band range. The EM wave transmission characteristics of the low-observable radome were simulated by a 3-dimensional electromagnetic analysis software and also measured by the free space measurement method with respect to the pattern size of FSS and foam cores. The mechanical properties of the low-observable radome made of aramid/epoxy composite were measured by the 3-point bending test and compared to those of the conventional low-observable radome made of E-glass/epoxy composite.  相似文献   

18.
This paper addresses the materials and processes for printed wiring board compatible embedded capacitor using ceramic, polymer and metal. The Ca[(Li1/3Nb2/3)0.8Ti0.2]O3?δ (CLNT)–epoxy–silver, three-phase composites were prepared by two step mixing and thermosetting technique. The dielectric properties of the three-phase composites were investigated in terms of volume fraction of silver, temperature and frequency. The dielectric properties of epoxy–CLNT composites were compared with theoretical predictions. The relative permittivity of the three-phase composites increased with silver loading. Addition of 0.28 volume fraction of silver increases the relative permittivity of epoxy–CLNT composites from 8 to 142 at 1 MHz. This composite is flexible and can be fabricated into various shapes with low processing temperature.  相似文献   

19.
We investigated the effects of post-deposition cooling conditions on the surface morphologies and dielectric properties of CaCu3Ti4O12 (CCTO) thin films grown by pulsed-laser deposition on Pt/TiO2/SiO2/Si substrates. CCTO thin films cooled under the typical cooling parameters, i.e., slow cooling (3 °C/min) at high oxygen pressure (66 kPa) showed a severe segregation of nanoparticles near the grain boundaries, which was identified to be copper oxide from electron probe micro analyzer mapping. On the other hand, we could not observe any segregation on the film surface when the samples were cooled fast (∼ 20 °C/min) at relatively low oxygen pressure (100 Pa). The dielectric constant, εr, of CCTO thin films deposited at 750 °C with severe surface segregation (εr ∼ 750 at 10 kHz) was found to be much lower than that (εr ∼ 2000 at 10 kHz) of CCTO thin films with smooth surface. As the copper-oxide segregation becomes more serious, which preferentially occurs at relatively high ambient oxygen pressure and temperature, the degradation in the dielectric properties of CCTO films becomes larger. The variation of dielectric constant of CCTO films with no copper-oxide segregation could be related to the presence of an impurity phase at grain boundaries.  相似文献   

20.
Bamboo fiber-reinforced epoxy composites were fabricated with untreated and alkali treated bamboo fibers. Dielectric, electric modulus, ac, and dc conductivity studies were carried out to rationalize the dielectric behavior of bamboo/epoxy composites. Composites of two fiber orientation parallel and perpendicular to the electric field were prepared. The dielectric behavior and electric modulus spectra of the composites were characterized using standard impedance analyzer. Dielectric properties were analyzed as a function of frequency (95 Hz–2 MHz) for temperatures in the range from 30 to 180 °C. Real part of dielectric constant (ε′), conductivity, and dielectric dissipation factor (tan δ) of 0° oriented bamboo/epoxy composites were higher than that of 90° oriented composites. Conductivity activation energy, tan δ, ε′, and volume resistivity decreased with increase in frequency at all the temperatures under study. Mercerization reduces the water absorption in bamboo fibers and thus improves corresponding dielectric properties of composites. Relaxation times 39.80 μs and 258.5 μs for 0° and 90° oriented bamboo/epoxy composites were calculated respectively from the relaxation peaks observed in electric modulus spectra at 180 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号