首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
A polyanhydride implant containing gentamicin sulfate was fabricated using a laboratory-scale injection-molding machine. After injection molding, the implants were subject to heat treatment at 60°C for various time periods with or without nitrogen protection. The impact of this heat treatment on the in vitro properties of the implants including copolymer molecular weights, mechanical properties, and in vitro drug-release profiles was investigated. This heat treatment caused a drastic drop in the molecular weight of the copolymer. Heating without nitrogen protection resulted in the hardening of the implant, but heating in the presence of nitrogen rendered the implant less rigid. It was also found that a faster in vitro drug release profile was shown by implants heated without nitrogen protection and a pronounced slowing down in drug release was exhibited by implants heated with nitrogen protection.  相似文献   

2.
Hydrophilic 5-fluorouracil (5-FU) loaded cylindrical poly(ε-caprolactone) (PCL) implants with different implant diameters (2, 4 and 8 mm), different drug loadings (25% and 50%) and end-capping were fabricated and characterized. The implant structure, drug content and molecular weight of PCL after 120 days drug release were investigated. The in vitro release results showed that, when the drug loading was the same, drug release was fastest for the implant with a diameter of 2 mm and slowest for the implant with a diameter of 8 mm; for the implants with the same diameters, the release of drug from the implants with 50% drug loading was faster than that from the implants with 25% drug loading; however, this effect of drug loading decreased with the increase of implant diameter; in addition, 5-FU was released slightly slower from the end-capped implants than from the corresponding uncapped implants; the drug release data for all the uncapped implants were best fit with the Ritger-Peppas model. Drug release from the hydrophobic implants was found to be dominated by diffusion mechanism. Scanning electron microscopy images and drug content measurements revealed that 5-FU release took place gradually from the exterior region to the interior region of the implants.  相似文献   

3.
Septacin® is a biodegradable sustained-release implant containing 20% (w/w) gentamicin sulfate. The matrix of the implant is a polyanhydride copolymer composed of erucic acid dimer (EAD) and sebacic acid (SA) in a one-to-one weight ratio. The effect of storage temperatures (-15°C and 25°C) on the stability of Septacin® was evaluated with respect to gentamicin potency, copolymer molecular weight, and in vitro drug release. The drug in polymer matrix was stable for at least 12 months when stored at 25°C, but the molecular weight of the copolymer declined rapidly at this temperature. At -15°C, there was no change in the molecular weight of the copolymer. However, the placebo (copolymer without gentamicin) exhibited a significant drop in copolymer molecular weight at both temperatures. The drug release profiles showed no change for samples stored at -15°C for the duration of this study, while the release of drug slowed down significantly for samples stored at 25°C for longer than one month. A pronounced difference in the morphology of the -15°C samples and the 25°C samples was observed during the in vitro dissolution test; cracking of the -15°C samples was evident, but the 25°C samples remained intact.  相似文献   

4.
Hydrophilic 5-fluorouracil (5-FU) loaded cylindrical poly(?-caprolactone) (PCL) implants with different implant diameters (2, 4 and 8?mm), different drug loadings (25% and 50%) and end-capping were fabricated and characterized. The implant structure, drug content and molecular weight of PCL after 120 days drug release were investigated. The in vitro release results showed that, when the drug loading was the same, drug release was fastest for the implant with a diameter of 2?mm and slowest for the implant with a diameter of 8?mm; for the implants with the same diameters, the release of drug from the implants with 50% drug loading was faster than that from the implants with 25% drug loading; however, this effect of drug loading decreased with the increase of implant diameter; in addition, 5-FU was released slightly slower from the end-capped implants than from the corresponding uncapped implants; the drug release data for all the uncapped implants were best fit with the Ritger-Peppas model. Drug release from the hydrophobic implants was found to be dominated by diffusion mechanism. Scanning electron microscopy images and drug content measurements revealed that 5-FU release took place gradually from the exterior region to the interior region of the implants.  相似文献   

5.
The development of an effective sustained ocular drug delivery system remains a challenging task. The objective of the present study was to characterize a silicone pressure sensitive adhesive (PSA) episcleral implant system for transscleral drug delivery. Silicone PSA implants for dexamethasone, atenolol, and bovine serum albumin (BSA) were prepared at different polymer-to-drug mass ratios. Implant adhesion to human cadaver sclera was measured. Drug release experiments were conducted in well-stirred containers in vitro. The results were then analyzed using a pharmacokinetic model and in vitro–in vivo data comparison from previous studies. The silicone PSA episcleral implants in the present study had an average diameter of 3.5?mm and a thickness of 0.8?mm. Drug release from the silicone PSA implants was influenced by drug solubility, implant polymer content, and implant coating. Drug release from the implants was observed to follow the receding boundary release mechanism and was solubility dependent with the higher water solubility drug showing higher release rate than the low-solubility drug. Increasing polymer content in the implants led to a significant decrease in the drug release rate. Coated implants reduced the initial burst effect and provided lower release rates than the uncoated implants. These implants provided sustained drug release that could last up to several months in vitro and demonstrated the potential to offer drug delivery for chronic ocular diseases via the transscleral route.  相似文献   

6.
Titanium and its alloys are widely used as implant materials. Their integration in the bone is in general very good without fibrous interface layer. However, titanium and its alloys have certain limitations. Metal ions are released from the implant alloy and have been detected in tissues close to titanium implants. The release of these elements, even in small amounts, may cause local irritation of the tissues surrounding the implant. Cell and tissue responses are affected not only by the chemical properties of the implant surface, but also by the surface topography or roughness of the implants. To overcome the problem of ion release and to improve the biological, chemical, and mechanical properties, many surface treatment techniques are used. Any surface treatment that would elicit favorable response from tissues can be applied to enhance the usefulness of the implants. In view of this, the current review describes surface modification of titanium and titanium alloys by ion beam implantation.  相似文献   

7.
20-Hydroxyecdysone (20-OH) is a natural compound with many demonstrated effects on the physiological functions of vertebrates, particularly increased protein synthesis. Our study sought a suitable dosage form with continuous release of the drug lasting several weeks for implantation into agricultural animals. Biodegradable microparticles and implants of poly(L-lactic) and poly(DL-lactic) acids were prepared. Oligomers of these materials were synthesized, and a method of melting the binary mixture of the oligomer and 20-OH was employed. The particles were prepared simply by grinding the solidified block of the melt and sieving. Implants were prepared by extruding the melt into silicone tubes, removing the solidified content, and cutting into cylinders of 2 mm diameter and various lengths. A new method of preparation of hollow cylinders by aspirating air into silicone tubes filled with the melt was developed. The experiments demonstrated stability of 20-OH during heat treatment. Release of the active ingredient was tested in static in vitro conditions, analogous to those at the site of implantation, and prolonged drug release was obtained with both types of implant. The hollow implants gave release rates nearest to ideal zero-order kinetics and would appear most appropriate for testing in vivo.  相似文献   

8.
Model to analyse the bone on‐growth on bioactive coated implant surfaces Especially on the field of bone regeneration, transient and permanent implants are an important method of therapy in the Orthopaedic Surgery. In this context, bioactive surfaces on metallic implants provide an improved contact to the surrounding bone. The goal of our study was to establish an in‐vitro test system to evaluate the on‐growth of bone‐derived cells on different surface coatings. Therefore, we invented a special kind of clamps made of commercially‐pure (c‐p) titanium and blasted with hydroxyapatite particles followed by electrochemically coating with calcium phosphate (BONIT®‐HA, BONIT®). Definite pieces of human cancellous bone were attached to these clamps, inserted onto tissue culture plates and cultivated in DMEM for ten days. Finally, the contact area between human cancellous bone and the implant surface was analyzed and the spreading of osteoblast‐like cells evaluated by scanning electron microscopy (SEM). A well‐spread morphology of bone cells was observed on the implant surfaces coated with calcium phosphate (CaP). In comparison the clamps without CaP coatings showed only a marginal growth of bone cells on the clamp surface. The presented newly in‐vitro test setup using titanium clamps coated with bioactive layers attached to human cancellous bone represents a well‐functioning model for qualitative evaluation of bone on‐growth.  相似文献   

9.
To prolong the precorneal resident time and improve ocular bioavailability of the drug, Pluronic-g-poly(acrylic acid) copolymers were studied as a temperature-responsive in situ gelling vehicle for an ophthalmic drug delivery system. The rheological properties and in vitro drug release of Pluronic-g-PAA copolymer gels, as well as the in vivo resident properties of such in situ gel ophthalmic formulations, were investigated. The rheogram and in vitro drug release studies indicated that the drug release rates decreased as acrylic acid/Pluronic molar ratio and copolymer solution concentration increased. It was also shown that the drug concentration had no obvious effect on drug release. The release rates of drug from such copolymer gels were mainly dependent on the gel dissolution. In vivo resident experiments showed the drug resident time and the total resident amount increased by 4-fold and 1.2-fold for in situ gel compared with eye drops. These in vivo experimental results, along with the rheological properties and in vitro drug release studies, demonstrated that in situ gels containing Pluronic-g-PAA copolymer may significantly prolong the drug resident time and thus improve bioavailability. The results showed that the Pluronic-g-PAA copolymer can be a promising in situ gelling vehicle for ophthalmic drug delivery.  相似文献   

10.
Various butorphanol-loaded microparticles have been prepared with a biodegradable copolymer P(FAD-SA) of erucic acid dimer (FAD) and sebacic acid (SA) and a copolymer P(CPP-SA) of carboxyphenoxypropane (CPP) and SA using a melt compounding and milling method. Drug release was measured in vitro following incubation of drug-loaded microparticles in water for injection at 37°C. It was found that butorphanol was released in a sustained manner, yielding a cumulative drug release of about 100% over a period of 48 hr. Also, drug release was affected by drug loading and the size of the microparticles; however, it was not significantly influenced by the copolymer composition. Scanning electron microscopic (SEM) results showed that most of the particles were irregular in shape with uneven surfaces. The molecular weights of the copolymers were not changed after this fabrication process. In addition, 20% butorphanol-encapsulated microspheres were prepared with copolymer P(FAD-SA) by spray-drying. The SEM micrograph shows that the particle sizes of the microspheres ranged from 2 to 10 μm, and the external surfaces appear smooth. Moreover, rapid drug release was observed for these microspheres, with more than 92% of the encapsulated drug released within the first 2 hr.  相似文献   

11.
蒸气辅助快速热循环注塑技术及模温响应模拟   总被引:1,自引:0,他引:1  
快速热循环注塑采用动态模温控制新策略,可以彻底解决常规注塑工艺存在的短射、喷射痕、缩痕、流动痕、熔接痕、浮纤等缺陷。文中通过对快速热循环注塑工艺与常规注塑工艺的比较,深入研究了蒸气辅助快速热循环注塑工艺的原理,制定了相应的工艺流程,提出了一套新的利用蒸气加热和冷凝水冷却的动态模温控制方案。利用ANSYS模拟了快速热循环注塑工艺和常规注塑工艺的模温响应过程,分别获得了两种注塑工艺的模具加热速率和冷却速率,讨论了快速热循环注塑对塑件成型周期的影响规律。  相似文献   

12.
Various butorphanol-loaded microparticles have been prepared with a biodegradable copolymer P(FAD-SA) of erucic acid dimer (FAD) and sebacic acid (SA) and a copolymer P(CPP-SA) of carboxyphenoxypropane (CPP) and SA using a melt compounding and milling method. Drug release was measured in vitro following incubation of drug-loaded microparticles in water for injection at 37°C. It was found that butorphanol was released in a sustained manner, yielding a cumulative drug release of about 100% over a period of 48 hr. Also, drug release was affected by drug loading and the size of the microparticles; however, it was not significantly influenced by the copolymer composition. Scanning electron microscopic (SEM) results showed that most of the particles were irregular in shape with uneven surfaces. The molecular weights of the copolymers were not changed after this fabrication process. In addition, 20% butorphanol-encapsulated microspheres were prepared with copolymer P(FAD-SA) by spray-drying. The SEM micrograph shows that the particle sizes of the microspheres ranged from 2 to 10 μm, and the external surfaces appear smooth. Moreover, rapid drug release was observed for these microspheres, with more than 92% of the encapsulated drug released within the first 2 hr.  相似文献   

13.
The development of a nanocarrier delivery system having both sufficient stability in blood circulation and a rapid drug release profile at target sites remains a major challenge in cancer therapy. Here, a multifunctional star‐shaped micellar system with a precisely spatiotemporal control of releasing encapsulated agents is developed by mixing a photoinitiated crosslinking amphiphilic copolymer with a phenylboronic acid (PBA)‐functionalized redox‐sensitive amphiphilic copolymer for the first time. The combination of the functional polymers effectively resolves the contradiction that the micellar system cannot release the rapid drug release in cells when it possesses an extreme stability that is often required in blood circulation. In this system, the inner core polymers are photo‐crosslinked, endowing a stable micelle matrix structure; the end groups of the hydrophilic segments are decorated with PBA ligands, providing an active targeting ability; disulfide bonds in the micellar matrix impart a redox‐responsive trigger for the prompt intracellular release of drugs. As a result, with a relatively low DOX dosage (2 mg kg?1 per injection) the in vivo antitumor effect on H22‐bearing BALB/c mice shows that the micelles have a high therapeutic efficacy against solid tumors while minimal side effects against normal tissues.  相似文献   

14.
Enhanced understanding of neuropathologies has created a need for more advanced tools. Current neural implants result in extensive glial scarring and are not able to highly localize drug delivery due to their size. Smaller implants reduce surgical trauma and improve spatial resolution, but such a reduction requires improvements in device design to enable accurate and chronic implantation in subcortical structures. Flexible needle steering techniques offer improved control over implant placement, but often require complex closed‐loop control for accurate implantation. This study reports the development of steerable microinvasive neural implants (S‐MINIs) constructed from borosilicate capillaries (OD = 60 µm, ID = 20 µm) that do not require closed‐loop guidance or guide tubes. S‐MINIs reduce glial scarring 3.5‐fold compared to prior implants. Bevel steered needles are utilized for open‐loop targeting of deep‐brain structures. This study demonstrates a sinusoidal relationship between implant bevel angle and the trajectory radius of curvature both in vitro and ex vivo. This relationship allows for bevel‐tipped capillaries to be steered to a target with an average error of 0.23 mm ± 0.19 without closed‐loop control. Polished microcapillaries present a new microinvasive tool for chronic, predictable targeting of pathophysiological structures without the need for closed‐loop feedback and complex imaging.  相似文献   

15.
The main focus of this study is to develop colon targeted drug delivery systems for metronidazole (MTZ). Tablets were prepared using various polysaccharides or indigenously developed graft copolymer of methacrylic acid with guar gum (GG) as a carrier. Various polysaccharides such as GG, xanthan gum, pectin, carrageenan, β-cyclodextrin (CD) or methacrylic acid-g-guar (MAA-g-GG) gum have been selected and evaluated. The prepared tablets were tested in vitro for their suitability as colon-specific drug delivery systems. To further improve the colon specificity, some selected tablet formulations were enteric coated with Eudragit-L 100 to give protection in an acidic environment. Drug release studies were performed in simulated gastric fluid (SGF) for 2 hr followed by simulated intestinal fluid (SIF) at pH 7.4. The dissolution data demonstrate that the rate of drug release is dependent upon the nature and concentration of polysaccharide/polymer used in the formulations. Uncoated tablets containing xanthan gum or mixture of xanthan gum with graft copolymer showed 30-40% drug release during the initial 4-5 hr, whereas for tablets containing GG with the graft copolymer, it was 70%. After enteric coating, the release was drastically reduced to 18-24%. The other polysaccharides were unable to protect drug release under similar conditions. Preparations with xanthan gum as a matrix showed the time-dependent release behavior. Further, in vitro release was performed in the dissolution media with rat caecal contents. Results indicated an enhanced release when compared to formulations studied in dissolution media without rat caecal contents, because of microbial degradation or polymer solubilization. The nature of drug transport was found to be non-Fickian in case of uncoated formulations, whereas for the coated formulations, it was found to be super-Case-II. Statistical analyses of release data indicated that MTZ release is significantly affected by the nature of the polysaccharide used and enteric coating of the tablet. Differential scanning calorimetry indicated the presence of crystalline nature of drug in the formulations.  相似文献   

16.
Ciprofloxacin biodegradable implantable matrices (CPX-IMs) of tailored porous surfaces were fabricated by hot melt injection molding of poly-l-lactic acid (PLLA) followed by coating with PLLA/sodium chloride. CPX-IDs were designed to have a non-porous coat (NPC) or a porous coat of small pore size (SPC; 150–250?µm) or a large pore size (LPC; 250–350?µm). CPX-IMs surface pore size was confirmed by scanning electron microscope. The hardness of NPC, LPC, and SPC CPX-IMs were 58?±?2.8, 53?±?1.9, and 50?±?2.1?N, respectively. The measured porosity values were 41.2?±?1.53, 65.2?±?1.1, and 60.7?±?1.2%, respectively. Differential scanning calorimetry was employed to study the compatibility of ingredients, the effect of injection molding on polymer properties, and implants degradation. Coating of CPX-IMs prolonged drug release to reach a value of 90% release in 40?days. Antibacterial activity tests showed sufficiency of CPX to inhibit pathogens known to cause osteomyelitis. The in vivo study showed tissue compatibilities of the inserted matrices in tested rats with no sign of infection throughout the experiment period. SPC and LPC CPX-IMs demonstrated a better osteointegration, cell adhesion, and infiltration of different types of bone cells within implants structure compared to the non-porous matrix. Furthermore, LPC CPX-IMs showed a superior bone cell attachment and osteointegration relative to SPC CPX-IMs. Findings of this study confirmed the impact of porosity and pore sizes on cell proliferation and fracture healing concurrently with the sustained local antibiotic therapy for treatment or prevention of osteomyelitis.  相似文献   

17.
The purpose of this study was to evaluate sustained drug release after melt granulation and heat treatment. Theophylline (anhydrous) and phenylpropanolamine hydrochloride (PPA) were used as model drugs. Compritol® 888 ATO (Glyceryl Behenate NF) was incorporated as the wax matrix material. Formulations with drug:wax in 3:1 and 1:1 ratios were evaluated. Tablets were made by dry blending or melt granulation; some of the tablets were heat treated at 80°C for 30 min. Tablets with or without heat treatment were tested for drug release using in vitro drug dissolution. The results showed that melt granulation gave slower drug release than dry blending. Heat treatment further retarded drug release for both dry blending and melt granulation. The drug release rates for theophylline were slower than for PPA at the same wax level and processing method. The drug release profiles were linear using a square root of time scale. In conclusion, melt granulation and heat treatment slowed drug release for the wax matrix-controlled release tablets. Heat treatment of the tablets made by melt granulation further retarded drug release. Heat treatment redistributed the wax, forming a new matrix system with higher tortuosity. The application of melt granulation or heat treatment can successfully retard drug release.  相似文献   

18.
Previously it has been shown that recombinant human bone morphogenetic protein (rhBMP‐2) can be chemically immobilized by “anchor molecules” on titanium surfaces for serving as a drug delivery device. This opened the question of whether the insoluble immobilized rhBMP‐2 retained its activity in comparison to the same amount of soluble rhBMP‐2 included with the implant samples. Electropolished titanium miniplates (10 × 6 × 0.8 mm) were “surface‐enhanced” by a novel treatment with chromosulfuric acid and then coated with a total amount of 150–200 ng rhBMP‐2 prepared by recombinant technology. Periosteal flaps (7 × 20 mm) were detached and isolated from the anterior surface of the tibiae of adult rabbits and wrapped around the titanium sample plates which were then implanted in the M. gastrocnemius. In the first experimental group various controls without rhBMP‐2 were combined (n = 12). In the second experimental group implants with chemically immobilized rhBMP‐2 (n = 8) were compared with implants to which non‐immobilized soluble rhBMP‐2 was added (n = 8). Animals were sacrificed after 28 days and a quantitative evaluation was carried out by means of serial sections. Untreated control plates showed bone formation in 2/12 implants, rhBMP‐2 coated implants in 6/8 and implants with free rhBMP‐2 administered subperiostally in 8/8 cases. In the case of rhBMP‐2 coated implants the induced bone had direct contact to the implant in all cases while in the group with free administered rhBMP‐2 the bone had no contact to the implant in two cases, but was separated by a fibrous capsule. Bone volume, bone surface area, and trabecular number displayed no difference between the two rhBMP‐2‐groups. However, in the biocoated group a tendency to an increase in the bone‐implant contact area was evident. No differences in osteoid area, osteoid perimeter and eroded perimeter were detected. We conclude that in the case of non‐immobilized rhBMP‐2 there is the danger for formation of fibrous tissue between the implant and the newly formed bone and in addition the generation of ectopic bone at inappropriate places. In contrast chemically immobilized rhBMP‐2 does not have these drawbacks and at the same time displays a biological activity on surfaces similar to that of soluble rhBMP‐2 demonstrating that biomaterial surfaces can be tailored for a selective and specific interaction with the target tissue.  相似文献   

19.
Inspired by the highly ordered nanostructure of bone, nanodopant composite biomaterials are gaining special attention for their ability to guide bone tissue regeneration through structural and biological cues. However, bone malformation in orthopedic surgery is a lingering issue, partly due to the high surface energy of traditional nanoparticles contributing to aggregation and inhomogeneity. Recently, carboxyl‐functionalized synthetic polymers have been shown to mimic the carboxyl‐rich surface motifs of non‐collagenous proteins in stabilizing hydroxyapatite and directing intrafibrillar mineralization in‐vitro. Based on this biomimetic approach, it is herein demonstrated that carboxyl functionalization of poly(lactic‐co‐glycolic acid) can achieve great material homogeneity in nanocomposites. This ionic colloidal molding method stabilizes hydroxyapatite precursors to confer even nanodopant packing, improving therapeutic outcomes in bone repair by remarkably improving mechanical properties of nanocomposites and optimizing controlled drug release, resulting in better cell in‐growth and osteogenic differentiation. Lastly, better controlled biomaterial degradation significantly improved osteointegration, translating to highly regular bone formation with minimal fibrous tissue and increased bone density in rabbit radial defect models. Ionic colloidal molding is a simple yet effective approach of achieving materials homogeneity and modulating crystal nucleation, serving as an excellent biomimetic scaffolding strategy to rebuild natural bone integrity.  相似文献   

20.
Bone‐implant‐associated infections are common after orthopedic surgery due to impaired host immune response around the implants. In particular, when a biofilm develops, the immune system and antibiotic treatment find it difficult to eradicate, which sometimes requires a second operation to replace the infected implants. Most strategies have been designed to prevent biofilms from forming on the surface of bone implants, but these strategies cannot eliminate the biofilm when it has been established in vivo. To address this issue, a nonsurgical, noninvasive treatment for biofilm infection must be developed. Herein, a red‐phosphorus–IR780–arginine–glycine–aspartic‐acid–cysteine coating on titanium bone implants is prepared. The red phosphorus has great biocompatibility and exhibits efficient photothermal ability. The temperature sensitivity of Staphylococcus aureus biofilm is enhanced in the presence of singlet oxygen (1O2) produced by IR780. Without damaging the normal tissue, the biofilm can be eradicated through a safe near‐infrared (808 nm) photothermal therapy at 50 °C in vitro and in vivo. This approach reaches an antibacterial efficiency of 96.2% in vivo with 10 min of irradiation at 50 °C. Meanwhile, arginine–glycine–aspartic‐acid–cysteine decorated on the surface of the implant can improve the cell adhesion, proliferation, and osteogenic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号