首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bismuth telluride (Bi2Te3) is one of the most important commercial thermoelectric materials. In recent years, the discovery of topologically protected surface states in Bi chalcogenides has paved the way for their application in nanoelectronics. Determination of the fracture toughness plays a crucial role for the potential application of topological insulators in flexible electronics and nanoelectromechanical devices. Using depth-sensing nanoindentation tests, we investigated for the first time the fracture toughness of bulk single crystals of Bi2Te3 topological insulators, grown using the Bridgman-Stockbarger method. Our results highlight one of the possible pitfalls of the technology based on topological insulators.
  相似文献   

2.
Manipulating the alignment of liquid crystals (LCs) is a hot and fundamental issue for their applications in block copolymers, photonics, actuators, biosensors, and liquid-crystal displays. Here, the surface characteristic of Cu2O nanocrystals was well controlled to manipulate the orientation of the LCs. The mechanism of the orientation of the LCs induced by Cu2O nanocrystals was elucidated based on the interaction between the LCs and Cu2O nanocrystals. To comprehensively prove our assumption, different types of LCs (nematic, cholesteric, and smectic) as well as the same type of LCs with different polarities were selected in our system. Moreover, the photomechanical behaviors of the LC polymer composites demonstrated that the alignment of LCs can be effectively manipulated using Cu2O nanocrystals.
  相似文献   

3.
Multi-shelled CoFe2O4 hollow microspheres with a tunable number of layers (1–4) were successfully synthesized via a facile one-step method using cyclodextrin as a template, followed by calcination. The structural features, including the shell number and shell porosity, were controlled by adjusting the synthesis parameters to produce hollow spheres with excellent capacity and durability. This is a straightforward and general strategy for fabricating metal oxide or bimetallic metal oxide hollow microspheres with a tunable number of shells.
  相似文献   

4.
In-plane symmetry is an important contributor to the physical properties of two-dimensional layered materials, as well as atomically thin heterojunctions. Here, we demonstrate anisotropic/isotropic van der Waals (vdW) heterostructures of ReS2 and MoS2 monolayers, where interlayer coupling interactions and charge separation were observed by in situ Raman-photoluminescence spectroscopy, electrical, and photoelectrical measurements. We believe that these results could be helpful for understanding the fundamental physics of atomically thin vdW heterostructures and creating novel electronic and optoelectronic devices.
  相似文献   

5.
We systematically investigated the development of film morphology and crystallinity of methyl-ammonium bismuth (III) iodide (MA3Bi2I9) through onestep spin-coating on TiO2-deposited indium tin oxide (ITO)/glass. The precursor solution concentration and substrate structure have been demonstrated to be critically important in the active-layer evolution of the MA3Bi2I9-based solar cell. This work successfully improved the cell efficiency to 0.42% (average: 0.38%) with the mesoscopic architecture of ITO/compact-TiO2/mesoscopic-TiO2 (meso-TiO2)/MA3Bi2I9/2,2′,7,7′-tetrakis(N,N-di-4-methoxyphenylamino)-9,9′spiro-bifluorene (spiro-MeOTAD)/MoO3/Ag under a precursor concentration of 0.45 M, which provided the probability of further improving the efficiency of the Bi3+-based lead-free organic–inorganic hybrid solar cells.
  相似文献   

6.
The size and density of Ag nanoparticles on n-layer MoS2 exhibit thicknessdependent behavior. The size and density of these particles increased and decreased, respectively, with increasing layer number (n) of n-layer MoS2. Furthermore, the surface-enhanced Raman scattering (SERS) of Ag on this substrate was observed. The enhancement factor of this scattering varied with the thickness of MoS2. The mechanisms governing the aforementioned thickness dependences are proposed and discussed.
  相似文献   

7.
The assembly of hybrid nanomaterials has opened up a new direction for the construction of high-performance anodes for lithium-ion batteries (LIBs). In this work, we present a straightforward, eco-friendly, one-step hydrothermal protocol for the synthesis of a new type of Fe2O3-SnO2/graphene hybrid, in which zero-dimensional (0D) SnO2 nanoparticles with an average diameter of 8 nm and one-dimensional (1D) Fe2O3 nanorods with a length of ~150 nm are homogeneously attached onto two-dimensional (2D) reduced graphene oxide nanosheets, generating a unique point-line-plane (0D-1D-2D) architecture. The achieved Fe2O3-SnO2/graphene exhibits a well-defined morphology, a uniform size, and good monodispersity. As anode materials for LIBs, the hybrids exhibit a remarkable reversible capacity of 1,530 mA·g?1 at a current density of 100 mA·g?1 after 200 cycles, as well as a high rate capability of 615 mAh·g?1 at 2,000 mA·g?1. Detailed characterizations reveal that the superior lithium-storage capacity and good cycle stability of the hybrids arise from their peculiar hybrid nanostructure and conductive graphene matrix, as well as the synergistic interaction among the components.
  相似文献   

8.
In this paper, we describe the facile and effective preparation of a series of cobalt-doped Fe3O4 nanocatalysts via chemical coprecipitation in an aqueous solution. The catalyst allowed the hydrogenation of chloronitrobenzenes to chloroanilines (CAs) to proceed at low temperatures in absolute water and at atmospheric pressure, resulting in approximately 100% yield and selectivity. Several factors that influence the yield of CAs were investigated. The results showed that the suitable dosage of the catalyst was ~10 mol.% of the substrate, and the optimal reaction time, reaction temperature, and reaction pressure were 20 min, 80 °C, and atmospheric pressure, respectively. Under the optimal reaction conditions, the CA yield was as high as 98.4%, and the nitro reduction rate reached 100%, which indicates the excellent selectivity of the homemade catalyst. This process also overcomes the environmental pollution harms associated with the traditional process.
  相似文献   

9.
Nanomaterials with unique edge sites have received increasing attention due to their superior performance in various applications. Herein, we employed an effective ethylenediaminetetraacetic acid (EDTA)-assisted method to synthesize a series of exotic Bi2Se3 nanostructures with distinct edge sites. It was found that the products changed from smooth nanoplates to half-plate-containing and crown-like nanoplates upon increasing the molar ratio of EDTA to Bi3+. Mechanistic studies indicated that, when a dislocation source and relatively high supersaturation exist, the step edges in the initially formed seeds can serve as supporting sites for the growth of epilayers, leading to the formation of half-plate-containing nanoplates. In contrast, when the dislocation source and a suitably low supersaturation are simultaneously present in the system, the dislocation-driven growth mode dominates the process, in which the step edges form at the later stage of the growth responsible for the formation of crown-like nanoplates.
  相似文献   

10.
A facile inside-out Ostwald ripening route to the morphology-controlled preparation of TiO2 microspheres is developed. Here, TiO2 hollow microspheres (HM) and solid microspheres (SM) are prepared by adjusting the volume ratio of isopropanol (IPA) to acetylacetone (Acac) in the solvothermal process. During the formation process of HM, precipitation of solid cores, subsequent deposition of outer shells on the surface of cores, and simultaneous core dissolution and shell recrystallization are observed, which validate the inside-out Ostwald ripening mechanism. Design and optimization of the properties (pore size, surface area, and trap state) of TiO2 microspheres are vital to the high performance of dyesensitized solar cells (DSSCs). The optimized TiO2 microspheres (rHM and rSM) obtained by post-processing on recrystallization, possess large pore sizes, high surface areas and reduced trap states (Ti3+ and oxygen vacancy), and are thus ideal materials for photovoltaic devices. The power conversion efficiency of DSSCs fabricated using rHM photoanode is 11.22%, which is significantly improved compared with the 10.54% efficiency of the rSM-based DSSC. Our work provides a strategy for synthesizing TiO2 microspheres that simultaneously accommodate different physical properties, in terms of surface area, crystallinity, morphology, and mesoporosity.
  相似文献   

11.
Two-dimensional ZrS2 materials have potential for applications in nanoelectronics because of their theoretically predicted high mobility and sheet current density. Herein, we report the thickness and temperature dependent transport properties of ZrS2 multilayers that were directly deposited on hexagonal boron nitride (h-BN) by chemical vapor deposition. Hysteresis-free gate sweeping, metalinsulator transition, and T γ (γ ~ 0.82–1.26) temperature dependent mobility were observed in the ZrS2 films.
  相似文献   

12.
Because of the coupling between semiconducting and piezoelectric properties in wurtzite materials, strain-induced piezo-charges can tune the charge transport across the interface or junction, which is referred to as the piezotronic effect. For devices whose dimension is much smaller than the mean free path of carriers (such as a single atomic layer of MoS2), ballistic transport occurs. In this study, transport in the monolayer MoS2 piezotronic transistor is studied by presenting analytical solutions for two-dimensional (2D) MoS2. Furthermore, a numerical simulation for guiding future 2D piezotronic nanodevice design is presented.
  相似文献   

13.
Artificial photosynthesis uses a catalyst to convert CO2 into valuable hydrocarbon products by cleaving the C=O bond. However, this technology is strongly limited by two issues, namely insufficient catalytic efficiency and complicated catalyst-fabrication processes. Herein, we report the development of a novel spray-drying photocatalyst-engineering process that addresses these two issues. Through one-step spray drying, with a residence time of 1.5 s, nanocomposites composed of tin oxide (SnO2) nanoparticles and edge-oxidized graphene oxide (eo-GO) sheets were fabricated without post-treatment. These nanocomposites exhibited 28-fold and five-fold enhancements in photocatalytic efficiency during CO2 reduction compared to SnO2 and commercialized TiO2 (P25), respectively, after irradiation with simulated sunlight for 4 h. This scalable approach, based on short residence times and facile equipment setup, promotes the practical application of artificial photosynthesis through the potential mass production of efficient photocatalysts.
  相似文献   

14.
The oxygen reduction reaction (ORR) is essential in research pertaining to life science and energy. In applications, platinum-based catalysts give ideal reactivity, but, in practice, are often subject to high costs and poor stability. Some cost-efficient transition metal oxides have exhibited excellent ORR reactivity, but the stability and durability of such alternative catalyst materials pose serious challenges. Here, we present a facile method to fabricate uniform Co x O y nanoparticles and embed them into N-doped carbon, which results in a composite of extraordinary stability and durability, while maintaining its high reactivity. The half-wave potential shows a negative shift of only 21 mV after 10,000 cycles, only one third of that observed for Pt/C (63 mV). Furthermore, after 100,000 s testing at a constant potential, the current decreases by only 17%, significantly less than for Pt/C (35%). The exceptional stability and durability results from the system architecture, which comprises a thin carbon shell that prevents agglomeration of the Co x O y nanoparticles and their detaching from the substrate.
  相似文献   

15.
Triangular Ni(HCO3)2 nanosheets were synthesized via a template-free solvothermal method. The phase transition and formation mechanism were explored systematically. Further investigation indicated that the reaction time and pH have significant effects on the morphology and size distribution of the triangular Ni(HCO3)2 nanosheets. More interestingly, the resulting product had an ultra-thin structure and high specific surface area, which can effectively accelerate the charge transport during charge–discharge processes. As a result, the triangular Ni(HCO3)2 nanosheets not only exhibited high specific capacitance (1,797 F·g-1 at 5 A·g-1 and 1,060 F·g-1 at 50 A·g-1), but also showed excellent cycling stability with a high current density (~80% capacitance retention after 5,000 cycles at the current density of 20 A·g-1).
  相似文献   

16.
Identification of atomic disorders and their subsequent control has proven to be a key issue in predicting, understanding, and enhancing the properties of newly emerging topological insulator materials. Here, we demonstrate direct evidence of the cation antisites in single-crystal SnBi2Te4 nanoplates grown by chemical vapor deposition, through a combination of sub-ångström-resolution imaging, quantitative image simulations, and density functional theory calculations. The results of these combined techniques revealed a recognizable amount of cation antisites between Bi and Sn, and energetic calculations revealed that such cation antisites have a low formation energy. The impact of the cation antisites was also investigated by electronic structure calculations together with transport measurement. The topological surface properties of the nanoplates were further probed by angle-dependent magnetotransport, and from the results, we observed a two-dimensional weak antilocalization effect associated with surface carriers. Our approach provides a pathway to identify the antisite defects in ternary chalcogenides and the application potential of SnBi2Te4 nanostructures in next-generation electronic and spintronic devices.
  相似文献   

17.
Micro-supercapacitors (MSCs) as important on-chip micropower sources have attracted considerable attention because of their unique and advantageous design for optimized maximum functionality within a minimized sized chip and excellent mechanical flexibility/stability in miniaturized portable electronic device applications. In this work, we report a novel, high-performance flexible integrated on-chip MSC based on hybrid nanostructures of reduced graphene oxide/Fe2O3 hollow nanospheres using a microelectronic photo-lithography technology combined with plasma etching technique. The unique structural design for on-chip MSCs enables high-performance enhancements compared with graphene-only devices, exhibiting high specific capacitances of 11.57 F·cm-3 at a scan rate of 200 mV·s-1 and excellent rate capability and robust cycling stability with capacitance retention of 92.08% after 32,000 charge/discharge cycles. Moreover, the on-chip MSCs exhibit superior flexibility and outstanding stability even after repetition of charge/discharge cycles under different bending states. As-fabricated highly flexible on-chip MSCs can be easily integrated with CdS nanowire-based photodetectors to form a highly compacted photodetecting system, exhibiting comparable performance to devices driven by conventional external energy storage units.
  相似文献   

18.
A facile strategy was designed for the fabrication of Fe3O4-nanoparticle-decorated TiO2 nanofiber hierarchical heterostructures (FTHs) by combining the versatility of the electrospinning technique and the hydrothermal growth method. The hierarchical architecture of Fe3O4 nanoparticles decorated on TiO2 nanofibers enables the successful integration of the binary composite into batteries to address structural stability and low capacity. In the resulting unique architecture of FTHs, the 1D heterostructures relieve the strain caused by severe volume changes of Fe3O4 during numerous charge-discharge cycles, and thus suppress the degradation of the electrode material. As a result, FTHs show excellent performance including higher reversible capacity, excellent cycle life, and good rate performance over a wide temperature range owing to the synergistic effect of the binary composition of TiO2 and Fe3O4 and the unique features of the hierarchical nanofibers.
  相似文献   

19.
Photocatalytic CO2 reduction on metal-oxide-based catalysts is promising for solving the energy and environmental crises faced by mankind. The oxygen vacancy (V o) on metal oxides is expected to be a key factor affecting the efficiency of photocatalytic CO2 reduction on metal-oxide-based catalysts. Yet, to date, the question of how an V o influences photocatalytic CO2 reduction is still unanswered. Herein, we report that, on V o-rich gallium oxide coated with Pt nanoparticles (V o-rich Pt/Ga2O3), CO2 is photocatalytically reduced to CO, with a highly enhanced CO evolution rate (21.0 μmol·h?1) compared to those on V o-poor Pt/Ga2O3 (3.9 μmol·h?1) and Pt/TiO2(P25) (6.7 μmol·h?1). We demonstrate that the V o leads to improved CO2 adsorption and separation of the photoinduced charges on Pt/Ga2O3, thus enhancing the photocatalytic activity of Pt/Ga2O3. Rational fabrication of an V o is thereby an attractive strategy for developing efficient catalysts for photocatalytic CO2 reduction.
  相似文献   

20.
Herein, we report a bottom-up solvothermal route to synthesize a flexible, highly efficient MoS2@SWNT electrocatalyst for hydrogen evolution reactions (HER). Characterization revealed that branch-like MoS2 nanosheets containing sulfurrich sites were in situ uniformly dispersed on free-standing single-walled carbon nanotube (SWNT) film, which could expose more unsaturated sulfur atoms, allowing excellent electrical contact with active sites. The flexible catalyst exhibited excellent HER performance with a low overpotential (~150 mV at 10 mA/cm2) and small Tafel slope (41 mV/dec). To further explain the improved performance, the local electronic structure was investigated by X-ray absorption near-edge structure (XANES) analysis, proving the presence of unsaturated sulfur atoms and strong electronic coupling between MoS2 and SWNT. This study provides an in-situ synthetic route to create new multifunctional flexible hybridized catalysts and useful insights into the relationships among the catalyst microstructure, electronic structure, and properties.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号