首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2D van der Waals (vdW) magnets, which present intrinsic ferromagnetic/antiferromagnetic ground states at finite temperatures down to atomic‐layer thicknesses, open a new horizon in materials science and enable the potential development of new spin‐related applications. The layered structure of vdW magnets facilitates their atomic‐layer cleavability and magnetic anisotropy, which counteracts spin fluctuations, thereby providing an ideal platform for theoretically and experimentally exploring magnetic phase transitions in the 2D limit. With reduced dimensions, the susceptibility of 2D magnets to a large variety of external stimuli also makes them more promising than their bulk counterpart in various device applications. Here, the current status of characterization and tuning of the magnetic properties of 2D vdW magnets, particularly the atomic‐layer thickness, is presented. Various state‐of‐the‐art optical and electrical techniques have been applied to reveal the magnetic states of 2D vdW magnets. Other emerging 2D vdW magnets and future perspectives on the stacking strategy are also given; it is believed that they will excite more intensive research and provide unprecedented opportunities in the field of spintronics.  相似文献   

2.
Van der Waals (vdW) heterostructures combining layered ferromagnets and other 2D crystals are promising building blocks for the realization of ultracompact devices with integrated magnetic, electronic, and optical functionalities. Their implementation in various technologies depends strongly on the development of a bottom-up scalable synthesis approach allowing for realizing highly uniform heterostructures with well-defined interfaces between different 2D-layered materials. It is also required that each material component of the heterostructure remains functional, which ideally includes ferromagnetic order above room temperature for 2D ferromagnets. Here, it is demonstrated that the large-area growth of Fe5−xGeTe2/graphene heterostructures is achieved by vdW epitaxy of Fe5−xGeTe2 on epitaxial graphene. Structural characterization confirms the realization of a continuous vdW heterostructure film with a sharp interface between Fe5−xGeTe2 and graphene. Magnetic and transport studies reveal that the ferromagnetic order persists well above 300 K with a perpendicular magnetic anisotropy. In addition, epitaxial graphene on SiC(0001) continues to exhibit a high electronic quality. These results represent an important advance beyond nonscalable flake exfoliation and stacking methods, thus marking a crucial step toward the implementation of ferromagnetic 2D materials in practical applications.  相似文献   

3.
Optically generated excitonic states (excitons and trions) in transition metal dichalcogenides are highly sensitive to the electronic and magnetic properties of the materials underneath. Modulation and control of the excitonic states in a novel van der Waals (vdW) heterostructure of monolayer MoSe2 on double-layered perovskite Mn oxide ((La0.8Nd0.2)1.2Sr1.8Mn2O7) is demonstrated, wherein the Mn oxide transforms from a paramagnetic insulator to a ferromagnetic metal. A discontinuous change in the exciton photoluminescence intensity via dielectric screening is observed. Further, a relatively high trion intensity is discovered due to the charge transfer from metallic Mn oxide under the Curie temperature. Moreover, the vdW heterostructures with an ultrathin h-BN spacer layer demonstrate enhanced valley splitting and polarization of excitonic states due to the proximity effect of the ferromagnetic spins of Mn oxide. The controllable h-BN thickness in vdW heterostructures reveals a several-nanometer-long scale of charge transfer as well as a magnetic proximity effect. The vdW heterostructure allows modulation and control of the excitonic states via dielectric screening, charge carriers, and magnetic spins.  相似文献   

4.
Manipulation of long-range order in 2D van der Waals (vdW) magnetic materials (e.g., CrI3, CrSiTe3 ,etc.), exfoliated in few-atomic layer, can be achieved via application of electric field, mechanical-constraint, interface engineering, or even by chemical substitution/doping. Usually, active surface oxidation due to the exposure in the ambient condition and hydrolysis in the presence of water/moisture causes degradation in magnetic nanosheets that, in turn, affects the nanoelectronic /spintronic device performance. Counterintuitively, the current study reveals that exposure to the air at ambient atmosphere results in advent of a stable nonlayered secondary ferromagnetic phase in the form of Cr2Te3 (TC2 ≈160 K) in the parent vdW magnetic semiconductor Cr2Ge2Te6 (TC1 ≈69 K). The coexistence of the two ferromagnetic phases in the time elapsed bulk crystal is confirmed through systematic investigation of crystal structure along with detailed dc/ac magnetic susceptibility, specific heat, and magneto-transport measurement. To capture the concurrence of the two ferromagnetic phases in a single material, Ginzburg-Landau theory with two independent order parameters (as magnetization) with a coupling term can be introduced. In contrast to the rather common poor environmental stability of the vdW magnets, the results open possibilities of finding air-stable novel materials having multiple magnetic phases.  相似文献   

5.
Unlike conventional plasmonic media, polaritonic van der Waals (vdW) materials hold promise for active control of light–matter interactions. The dispersion relations of elementary excitations such as phonons and plasmons can be tuned in layered vdW systems via stacking using functional substrates. In this work, infrared nanoimaging and nanospectroscopy of hyperbolic phonon polaritons are demonstrated in a novel vdW heterostructure combining hexagonal boron nitride (hBN) and vanadium dioxide (VO2). It is observed that the insulator‐to‐metal transition in VO2 has a profound impact on the polaritons in the proximal hBN layer. In effect, the real‐space propagation of hyperbolic polaritons and their spectroscopic resonances can be actively controlled by temperature. This tunability originates from the effective change in local dielectric properties of the VO2 sublayer in the course of the temperature‐tuned insulator‐to‐metal phase transition. The high susceptibility of polaritons to electronic phase transitions opens new possibilities for applications of vdW materials in combination with strongly correlated quantum materials.  相似文献   

6.
Abstract

We explore the electronic, transport and thermoelectric properties of Fe1+ySexTe1?x compounds to clarify the mechanisms of superconductivity in Fe-based compounds. We carry out first-principles density functional theory (DFT) calculations of structural, electronic, magnetic and transport properties and measure resistivity, Hall resistance and Seebeck effect curves. All the transport properties exhibit signatures of the structural/magnetic transitions, such as discontinuities and sign changes of the Seebeck coefficient and of the Hall resistance. These features are reproduced by calculations provided that antiferromagnetic correlations are taken into account and experimental values of lattice constants are considered in DFT calculations. On the other hand, the temperature dependences of the transport properties can not be fully reproduced, and to improve the agreement between experiment and DFT calculations it is necessary to go beyond the constant relaxation time approximation and take into account correlation effects.  相似文献   

7.
The magnetic characteristics of anisotropic MM-FeB- (Al, Ti and Al-Co) permanent magnets have been investigated by using hot-pressing and die-upsetting process. The best magnetic properties obtained in these studies were H C = 5.1 kOe, B r = 5.4 kG with (BH)max = 5.1 MGOe for hot-pressed MM-FeB-Al-Co magnets and H C = 3.6 kOe, B r = 6.7 kG, (BH)max = 6.8 MGOe for die-upset MM-FeB-Al-Co magnets. Higher squareness of demagnetization curve was obtained in anisotropic die-upset MM-FeB- (Al, Al-Co) magnets. X-ray diffraction and STEM investigations revealed that the higher magnetic properties in die-upset magnets were resulted from alignment of the c-axis along the die-upsetting direction. The magnetic anisotropy of the die-upset magnets and the densification of the hot-pressed magnets were increased by partial substitution of Al and Al-Co for Fe.  相似文献   

8.
Cai  Yao  An  Xizhong  Zou  Qingchuan  Fu  Haitao  Yang  Xiaohong  Zhang  Hao 《Journal of Materials Science》2021,56(20):11814-11827

In the design of composite materials, the properties and failure modes/mechanisms are always of the main concern. In this work, the mechanical properties and failure mechanisms of composite laminates with classical fabric stacking patterns ([(0, 90)]8 and [(0, 90)/(±?45)]4) were systematically investigated through mechanical experiments and FEM (finite element method) numerical simulations. The results show that the tensile modulus and bending modulus of the laminates were reduced by 22.2% and 37% after partially changing the stacking angle to?±?45°, but corresponding elongation and bending displacement were increased by 8.8% and 11.7%, respectively. Bending failure mode changes from complete fracture to partial fracture. Meanwhile, the delamination damage and tow peeling from the matrix increase significantly. FEM simulations on tensile and bending processes of the composites indicate that the?±?45° stacking angle leads to the change of the axial stress direction from SX (0°) to SY (±?45°), which is difficult to be observed from mechanical experiments. The FEM simulation provides a cost effective and efficient way for the structural visual optimization design and failure prediction of the actual composite materials.

  相似文献   

9.
In 2D magnets, interlayer exchange coupling is generally weak due to the van der Waals layered structure but it still plays a vital role in stabilizing the long-range magnetic ordering and determining the magnetic properties. Using complementary neutron diffraction, magnetic, and torque measurements, the complete magnetic phase diagram of CrPS4 crystals is determined. CrPS4 shows an antiferromagnetic ground state (A-type) formed by out-of-plane ferromagnetic monolayers with interlayer antiferromagnetic coupling along the c axis below TN = 38 K. Due to small magnetic anisotropy energy and weak interlayer coupling, the low-field metamagnetic transitions in CrPS4, that is, a spin-flop transition at ≈0.7 T and a spin-flip transition from antiferromagnetic to ferromagnetic under a relatively low field of 8 T, can be realized for Hc. Intriguingly, with an inherent in-plane lattice anisotropy, spin-flop-induced moment realignment in CrPS4 for Hc is parallel to the quasi-1D chains of CrS6 octahedra. The peculiar metamagnetic transitions and in-plane anisotropy make few-layer CrPS4 flakes a fascinating platform for studying 2D magnetism and for exploring prototype device applications in spintronics and optoelectronics.  相似文献   

10.
Design and synthesis of ordered, metal‐free layered materials is intrinsically difficult due to the limitations of vapor deposition processes that are used in their making. Mixed‐dimensional (2D/3D) metal‐free van der Waals (vdW) heterostructures based on triazine (C3N3) linkers grow as large area, transparent yellow‐orange membranes on copper surfaces from solution. The membranes have an indirect band gap (E g,opt = 1.91 eV, E g,elec = 1.84 eV) and are moderately porous (124 m2 g?1). The material consists of a crystalline 2D phase that is fully sp2 hybridized and provides structural stability, and an amorphous, porous phase with mixed sp2–sp hybridization. Interestingly, this 2D/3D vdW heterostructure grows in a twinned mechanism from a one‐pot reaction mixture: unprecedented for metal‐free frameworks and a direct consequence of on‐catalyst synthesis. Thanks to the efficient type I heterojunction, electron transfer processes are fundamentally improved and hence, the material is capable of metal‐free, light‐induced hydrogen evolution from water without the need for a noble metal cocatalyst (34 µmol h?1 g?1 without Pt). The results highlight that twinned growth mechanisms are observed in the realm of “wet” chemistry, and that they can be used to fabricate otherwise challenging 2D/3D vdW heterostructures with composite properties.  相似文献   

11.
A solid-state metathesis approach initiated by microwave energy has been successfully applied for the synthesis of orthovanadates, M3V2O8 (M = Ca, Sr, and Ba). The structural, vibrational, thermal, optical and chemical properties of synthesized powders are determined by powder X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, magnetic property measurements and diffused reflectance spectra in the UV-VIS range. The direct bandgap of the synthesized materials was found to be 3·55 ± 0·2 eV, 3·75 ± 0·2 eV and 3·57 ± 0·2 eV for Ca3V2O8, Sr3V2O8 and Ba3V2O8, respectively.  相似文献   

12.
Zhang  Shuo  Chang  Pu  Zhang  Yunfei  Xu  Xiaomin  Guan  Lixiu  Tao  Junguang 《Journal of Materials Science》2022,57(10):5873-5884

Recently, the research of two-dimensional layered transition metal dichalcogenides has made great progress due to their high potential in advanced electronic devices. In this work, H-phase VS2 atomic layers with different morphologies and stacking orders were successfully synthesized on sapphire via chemical vapor deposition. The H-phase VS2 shows semiconductor characteristic with its valence band maximum located?~?0.25 eV below the Fermi level. Interlayer many-body interactions are strongly stacking-dependent, leading to distinguished intensity ratio between the breathing and shear modes, 2.99?±?0.94 for AA, and 1.72?±?0.26 for AB stacking. The intralayer S-V interaction (force constant: 2.80–3.54?×?1021 N/m3) is two orders of magnitude larger than the interlayer S–S interaction (force constant: 1.98–6.70?×?1019 N/m3). The shear modulus is further derived to be?~?12.8 GPa,?~?30% smaller than that of MoS2. The prepared VS2 film exhibits obvious magnetic behavior at room temperature with the attenuation distance of?~?16–25 nm in out-of-plane direction. The morphology dependent magnetism and stability investigations indicate that the measured magnetic behaviors of the sample have a certain degree of extrinsic contributions, which may settle down some experimental controversies about the magnetic behaviors in this specific system.

  相似文献   

13.
Charge carrier transport in multilayer van der Waals (vdW) materials, which comprise multiple conducting layers, is well described using Thomas–Fermi charge screening (λTF) and interlayer resistance (Rint). When both effects occur in carrier transport, a channel centroid migrates along the c‐axis according to a vertical electrostatic force, causing redistribution of the conduction centroid in a multilayer system, unlike a conventional bulk material. Thus far, numerous unique properties of vdW materials are discovered, but direct evidence for distinctive charge transport behavior in 2D layered materials is not demonstrated. Herein, the distinctive electron conduction features are reported in a multilayer rhenium disulfide (ReS2), which provides decoupled vdW interaction between adjacent layers and much high interlayer resistivity in comparison with other transition‐metal dichalcogenides materials. The existence of two plateaus in its transconductance curve clearly reveals the relocation of conduction paths with respect to the top and bottom surfaces, which is rationalized by a theoretical resistor network model by accounting of λTF and Rint coupling. The effective tunneling distance probed via low‐frequency noise spectroscopy further supports the shift of electron conduction channel along the thickness of ReS2.  相似文献   

14.
By virtue of the layered structure, van der Waals (vdW) magnets are sensitive to the lattice deformation controlled by the external strain, providing an ideal platform to explore the one-step magnetization reversal that is still conceptual in conventional magnets due to the limited strain-tuning range of the coercive field. In this study, a uniaxial tensile strain is applied to thin flakes of the vdW magnet Fe3GeTe2 (FGT), and a dramatic increase of the coercive field (Hc) by more than 150% with an applied strain of 0.32% is observed. Moreover, the change of the transition temperatures between the different magnetic phases under strain is investigated, and the phase diagram of FGT in the strain–temperature plane is obtained. Comparing the phase diagram with theoretical results, the strain-tunable magnetism is attributed to the sensitive change of magnetic anisotropy energy. Remarkably, strain allows an ultrasensitive magnetization reversal to be achieved, which may promote the development of novel straintronic device applications.  相似文献   

15.
The discovery of graphene has sparked much interest in science and lead to the development of an ample variety of novel two‐dimensional (2D) materials. With increasing research interest in the field of 2D materials in recent years, the researchers have shifted their focus from the synthesis to the modification of 2D materials, emphasizing their electronic structures. In this review, the possibilities of altering the band structures are discussed via three different approches: (1) alloying 2D materials, so called ternary 2D materials, such as hexagonal carbonized boron nitrides (h‐BCN) and transition metal dichalcogenides (TMDs) ternary materials; (2) stacking 2D materials vertically, which results in 2D heterostructures named van der Waals (vdW) solids (using hexagonal boron nitrides (h‐BN)/graphene and TMDs stacking as examples), and growing lateral TMDs heterostructrues; (3) controlling the thickness of 2D materials, that is, the number of layers. The electronic properties of some 2D materials are very sensitive to the thickness, such as in TMDs and black phosphorus (BP). The variations of band structures and the resulting physical properties are systematically discussed.  相似文献   

16.
Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one-unit cell displacement along the a axis. First-principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm−1 for AA stacking, and 20 cm−1 for AB stacking, making a simple tool for determining the stacking orders in ReS2. Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump–probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. The findings underscore the stacking-order driven optical properties and carrier dynamics of ReS2, mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order.  相似文献   

17.
We have studied the effect of composition and heat-treatment conditions on the structural and transport properties of La1 − x − y Ca x Na y MnO3 ± δ solid solutions. The materials obtained offer a magnetoresistance of about 48% in a magnetic field of 1.2 MA/m.  相似文献   

18.
The vertical stacking in semiconducting WSe2 bilayers grown by physical vapour transport was studied using atomic resolution annular dark field imaging. Our results show that the most common geometry was consistent with AA, the most stable configuration. However in some areas AB alignment was also observed, as expected due to the small energy difference between AA′ and AB. Additionally, two different rotational stacking orientations were observed, with rotation angles of 12 and 21°. These different vertical WSe2 bilayers could provide a means of engineering electronic band structure for specific optoelectronic properties.  相似文献   

19.
van der Waals (vdW) heterostructures based on atomically thin 2D materials have led to a new era in next‐generation optoelectronics due to their tailored energy band alignments and ultrathin morphological features, especially in photodetectors. However, these photodetectors often show an inevitable compromise between photodetectivity and photoresponsivity with one high and the other low. Herein, a highly sensitive WSe2/SnS2 photodiode is constructed on BN thin film by exfoliating each material and manually stacking them. The WSe2/SnS2 vdW heterostructure shows ultralow dark currents resulting from the depletion region at the junction and high direct tunneling current when illuminated, which is confirmed by the energy band structures and electrical characteristics fitted with direct tunneling. Thus, the distinctive WSe2/SnS2 vdW heterostructure exhibits both ultrahigh photodetectivity of 1.29 × 1013 Jones (Iph/Idark ratio of ≈106) and photoresponsivity of 244 A W?1 at a reverse bias under the illumination of 550 nm light (3.77 mW cm?2).  相似文献   

20.
Abstract

The processing, structures and phase constitutions and the magnetic properties of nanocomposite hard magnetic alloys are reviewed. The emphasis is on rare earth (RE)–iron–boron alloys in which the hard magnetic phase RE2Fe14B is intermixed with one or more soft magnetic phases. Processing–structure–property relationships are the principal focus, in particular, the role of the hard and soft nanocrystallite dimensions in promoting intergrain ferromagnetic exchange coupling and the consequent enhancement of remanent magnetisation and the technologically important maximum energy density. The powder processing, chill block melt spinning, mechanical alloying and thin film deposition routes to develop nanocrystalline and nanocomposite structures are reviewed. The coercivity mechanism in ultrafine grained alloys and the influence of crystallite dimensions are discussed, as are the effects on intrinsic and extrinsic properties of RE substitutions, replacement of iron by other transition metals and enrichment of the boron content. Exchange enhancements in Sm–Co based nanocomposite bulk alloys and in nanoscale FePt/α-Fe composite thin films are briefly considered, together with thin film materials involving exchange coupling between ferromagnetic and antiferromagnetic phases, in core–shell type structures of transition metal compounds surrounded by oxides and in mechanically alloyed materials. The processing and magnetic properties of bonded magnets based on nanocrystalline/nanocomposite REFeB alloys are discussed. The possibility of producing anisotropic hard/soft composites with properties approaching the theoretical maximum is considered and the extent to which this goal has been realised for fully dense alloys identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号