首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Ion beam mixing has emerged as a technique for understanding reactivity and chemistry at metal/Si interface and may find its applications in the field of microelectronics. We have investigated ion beam mixing at Co/Si interface induced by electronic excitation using 120 MeV Au+9 ion irradiation at different fluences, varying from 1012 to 1014 ions/cm2. Mixing was investigated by Rutherford Backscattering Spectroscopy (RBS) as a function of ion fluence and its mechanism across the interface is explained by the thermal spike model.  相似文献   

2.
The present work deals with the mixing of metal and silicon by swift heavy ions in high-energy range. Threshold value for the defect creation in metal Fe calculated was found to be ∼ 40 keV/nm. A thin film of Fe (10 nm) was deposited on Si (100) at a pressure of 4 × 10−8 Torr and was irradiated with 95 MeV Au ions. Irradiation was done at RT, to a dose of 1013 ions/cm2 and 1 pna current. The electronic energy loss was found to be 29.23 keV/nm for 95 MeV Au ions in Fe using TRIM calculation. Compositional analysis of samples was done by Rutherford backscattering spectroscopy. Reflectivity studies were carried out on the pre-annealed and post-annealed samples to study irradiation effects. Grazing incidence X-ray diffraction was done to study the interface. It was observed that ion beam mixing reactions at RT lead to mixing as a result of high electronic excitations.  相似文献   

3.
Rutherford Backscattering Spectrometry (RBS) and Electrical Resistivity Measurements (ERM) were used to investigate the mixing of Au/Ge bilayer deposited onto glass substrate induced by Ar ions. Mixing was initiated by bombarding the sample with 400 keV 40Ar+ beam with a fluence up to 1.2 × 1017 ions/cm2 at a constant flux of 0.25 μA/cm2. To assist the evaluation of the experimental results, all spectra were simulated using “RUMP” computer code. RBS results indicated that ion beam mixing led to a formation of AuGe2 compound. The mixed region was noticed to increase with the gradual increase of Ar+ fluence. Results were also compared with current theoretical models used to describe the mixing process. The Bφrgesen thermal spike model was found to accurately predict the diffusion in Au/Ge interface. An increase in the electrical resistivity of the film was detected during Ar+ irradiation.  相似文献   

4.
The present work deals with the mixing of iron and silicon by swift heavy ions in high-energy range. The thin film was deposited on a n-Si (111) substrate at 10−6 torr and at room temperature. Irradiations were undertaken at room temperature using 120 MeV Au+9 ions at the Fe/Si interface to investigate ion beam mixing at various doses: 5 × 1012 and 5 × 1013 ions/cm2. Formation of different phases of iron silicide has been investigated by X-ray diffraction (XRD) technique, which shows enhancement of intermixing and silicide formation as a result of irradiation. I-V measurements for both pristine and irradiated samples have been carried out at room temperature, series resistance and barrier heights for both as deposited and irradiated samples were extracted. The barrier height was found to vary from 0·73–0·54 eV. The series resistance varied from 102·04–38·61 kΩ.  相似文献   

5.
Nanoscale (approximately 90 nm) Copper nitride (Cu3N) films are deposited on borosilicate glass and Si substrates by RF sputtering technique in the reactive environment of nitrogen gas. These films are irradiated with 200 MeV Au15+ ions from Pelletron accelerator in order to modify the surface by high electronic energy deposition of heavy ions. Due to irradiation (i) at incident ion fluence of 1 x 10(12) ions/cm2 enhancement of grains, (ii) at 5 x 10912) ions/cm2 mass transport on the films surface, (iii) at 2 x 10(13) ions/cm2 line-like features on Cu3N/glass and nanometallic structures on Cu3N/Si surface are observed. The surface morphology is examined by atomic force microscope (AFM). All results are explained on the basis of a thermal spike model of ion-solid interaction.  相似文献   

6.
The effect of thermal annealing on the structure and magnetic properties of crystalline Tb/Fe multilayers has been studied using conversion electron M?ssbauer spectrometry and small-angle X-ray diffraction. The growth of Tb–Fe amorphous alloy from the interface is observed with increasing annealing temperature. After annealing at 873 K, a clear total mixing of the multilayers by interdiffusion has been evidenced. The results are compared with the effect of ion irradiation in the same system.  相似文献   

7.
Spin valve like AF/Fe/Cu/Fe (AF = Fe50Mn50 and Ir50Mn50) multilayer systems have been prepared by molecular beam epitaxy. Thin tracer layers enriched in the 57Fe isotope were artificially grown at the AF/Fe and Fe/Cu interfaces and the interfacial atomic diffusion was observed via 57Fe conversion electron Mössbauer spectroscopy. The results show that the atomic interdiffusion at all involved interfaces is lower in the IrMn based structures as compared to the FeMn based ones.  相似文献   

8.
In this study, a novel approach for the formation of indium oxide (IO) nanoparticles by irradiating IO thin film using 100?MeV Ag(8+) ions has been reported. High resolution transmission electron microscopy and energy dispersive x-ray analysis confirm the presence of single-crystalline IO nanoparticles after irradiation. The electronic excitations induced by 100?MeV Ag(8+) ions followed by thermal relaxation of the energy spike in IO thin film is responsible for the formation of latent tracks in the film. The electronic energy loss (S(e)) of 100?MeV Ag(8+) ions in IO is greater than the threshold electronic energy loss (S(eth)) required for the track formation in IO film, but is less than S(eth) required for crystalline silicon. Therefore, the tracks are formed in the IO film and not in the silicon substrate. This results in a stress induced at the IO film and silicon substrate interface which is responsible for dewetting of the tracks and the formation of nanoparticles. The theoretically calculated value of nanoparticle diameter using the thermal spike model is found to be in good agreement with the experimentally observed value of 30?nm.  相似文献   

9.
Abstract

The brazing of TiC cermet to cast iron was carried out at 1223 K for 5 – 30 min using Ag – Cu – Zn filler metal. The formation phases, interface structures and shear strengths of the joints were investigated. The experiment result and analysis identify that three new phases, namely Cu base solid solution, Ag base solid solution and (Fe, Ni) have formed during the brazing of TiC cermet to iron. The interface structure of the joints can be expressed as TiC cermet/Cu base solid solution/Ag base solid solution + a little Cu base solid solution/Cu base solid solution + (Fe, Ni)/cast iron. The highest shear strength of the joints is 292.0 MPa, obtained with a brazing time of 20 min.  相似文献   

10.
Synthesis of swift heavy ion induced metal silicide is a new advancement in materials science research. We have investigated the mixing at Co/Si interface by swift heavy ion beam induced irradiation in the electronic stopping power regime. Irradiations were undertaken at room temperature using 120 MeV Au ions at the Co/Si interface for investigation of ion beam mixing at various doses: 8 × 1012, 5 × 1013 and 1 × 1014 cm−2. Formation of different phases of cobalt silicide is identified by the grazing incidence X-ray diffraction (GIXRD) technique, which shows enhancement of intermixing and silicide formation as a result of irradiation.I–V characteristics at Co/Si interface were undertaken to understand the irradiation effect on conduction mechanism at the interface.  相似文献   

11.
采用电子束蒸镀的方法,通过改变多层膜的周期结构,成功地制备出具有不同晶格常数的bcc亚稳结构铁相的Fe/V多层膜,并研究了亚稳结构铁相形成对其磁性影响的规律.实验结果表明,多层膜中Fe与V层均由纳米晶粒组成.Fe层厚度小于2nm时,受多层膜界面自由能作用,Fe与V相互准外延生长,多层膜由点阵常数一致的体心立方相组成,其点阵常数随样品V/Fe层厚度比的增大而增加.多层膜平均原子磁矩随铁或钒层厚度的改变发生明显变化:当钒层厚度固定为6nm时,铁原子磁矩随铁层厚度的增加逐渐下降,在2nm处出现极小值后又随铁层增厚而回升;对于铁层厚度固定为1.6nm的样品,磁矩在钒层厚度为3nm时出现极大值.  相似文献   

12.
We have investigated interfacial chemistry in a 100 nm Ni on PTFE (polytetrafluoroethylene) bilayer system induced by 120 MeV Au ions with fluences varying from 1 × 1012 to 5 × 1013 ions/cm2. In-situ quadrupole mass analysis (QMA) shows emission of Fluorine (F) and different fluorocarbons (CxFy) such as CF, CF3, C2F3 etc. during irradiation. Electron spectroscopy for chemical analysis (ESCA) studies show that Ni reacts with chemically reactive species such as F/F and CxFy ions or radicals emitted during irradiation forming NiF2 and metal-polymer complexes (-CFNi-). Rutherford backscattering spectrometry (RBS) was used to analyze the atomic transport at the interface and strong interface mixing is observed at the ion fluence 5 × 1013 ions/cm2. Atomic force microscopy (AFM) studies before and after irradiation show that surface roughness is increased from 6.9 to 12.4 nm with increasing fluence. Observed results have been explained on the basis of the chemical reactions taking place within molten ion tracks in the polymer and hot zones around the ion paths created in the Ni film. The studies show that swift heavy ion irradiation introduces strong chemical alteration in the system and induces chemical reactions within the ion track, which enhance ion beam mixing in Ni-PTFE bilayer systems.  相似文献   

13.
用超高真空电子束蒸发方法成功制备了以不同厚度Fe为过渡层的Co/Cu/Co三明治巨磁电阻样品,与以Cr为过渡层的Co/Cu/Co三明治巨磁电阻样品比较,样品的矫顽力大大减小,因而样品的磁灵敏度有了较大地提高。当Fe过渡层的厚度为7nm时样品的磁电阻值最大。另外,温度更强烈地影响以Fe为过渡层样品的磁电阻值,在77K下样品的磁电阻曲线表现出明显的不对称性,它来源于低温下fcc Fe过渡层的反铁磁性转变。  相似文献   

14.
A set of sandwich films in the configurations, Fe(200 nm)/Cu(t)/Fe(200 nm); t = 20 nm, 40 nm, 60 nm, 80 nm, 100 nm and 200 nm have been grown using thermal and electron beam gun evaporation techniques at a temperature of 473 K, under high vacuum conditions. The structure and crystallite sizes of the films were investigated by grazing incidence X-ray diffraction (GIXRD). The microstructure was examined by scanning electron microscope (SEM) studies. Average grain size and surface roughness were determined by atomic force microscope (AFM). The room temperature magnetization as a function of field has been measured using the vibrating sample magnetometer (VSM). The results revealed the existence of antiferromagnetic (AF) coupling between Fe layers through an interfacer Cu layer. The strength of AF coupling was observed to be increasing with increasing t and became maximum for t = 60 nm and, decreases for further increase in t. The behavior of coercive field with t indicated softness of the films. The low temperature electrical resistivity in the range from 4.2 K to 300 K has been measured. The residual resistance ratio, RRR and the temperature coefficient, TCR were determined. The power laws for the resistivity variation with temperature have been established. This is for the first time that a set of sandwich films in the present configurations were investigated for structural, magnetic and electrical properties and, the power laws for resistivity variation at low temperature have been established.  相似文献   

15.
含Fe、Ni的CF/Cu复合材料   总被引:2,自引:0,他引:2  
用连续电镀法在碳纤维上镀铜后又镀Fe、Ni,制备了镀Cu-Fe、Cu-Ni的双镀层碳纤维。用它们分别制备了CF/Cu-Fe、CF/Cu-Ni复合材料,与Vt相近的CF/Cu复合材料相比,CF/Cu-Fe,CF/Cu-Ni复合材料的电阻率和弯曲强度均有不同程度的提高。通过调整碳纤维的体积分数Vf,复合材料的热膨胀系数可以明显降低。单向复合材料在断裂后,碳纤维没有明显拔出,CF/Cu-Ni复合材料的断口上,基体出现塑性变形,CF/Cu-Fe复合材料断口上的碳纤维表面上分布着不连续的瘤状物。用透射电镜分析了这两种复合材料的界面结构。CF/Cu-Fe复合材料中碳纤维表面上的不连续瘤状物是多晶的Fe3C相,CF/Cu-Ni复合材料的界面区则是Cu-Ni固溶体相。它们对碳纤维与铜基体的结合分别起着反应型和溶解型的强化作用。  相似文献   

16.
Since the structure at/near the interface of superlattices influences physical properties such as magnetic property, it is important to investigate details of the structure. The interface structure is characterized by the factors like atomic species, strain, mixing and roughness. The reflection high-energy electron diffraction (RHEED) system installed in our molecular-beam epitaxy (MBE) system enables us to observe, continuously, the change of the surface in-plane lattice constant, which is affected by atomic species, strain and/or mixing, on a real-time basis. Ternary superlattices consisting of three elements can clarify the effect of stacking sequence by comparison between the two types of superlattices with the reverse deposition sequences, since the effect caused by the combination of the same atomic species is cancelled out and the effect caused by the different stacking sequences remains. In the present paper, we review growth behaviors of binary and ternary metallic strained superlattices, especially magnetic ones, investigated mainly by our group, and summarize the discussion on their magnetic properties, mainly on the magnetic anisotropy, in terms of their structural characteristics. First, we introduce our RHEED system that works efficiently under a magnetic field arising from evaporation sources for low vapor-pressure materials. Then, MBE-grown binary strained superlattices, Co/Au, Co/Pt and Cu/Au, are discussed, with comparing to incoherent superlattices of Co/Ag and Cu/Ag having nearly the same lattice mismatch of constituents. Next, we review ternary strained superlattices with immiscible constituents with reverse deposition order, Au/Co/Ag and Ag/Co/Au superlattices, and Au/Co/Cu and Cu/Co/Au superlattices, in relation to the growth behaviors of binary superlattices. Finally, ternary strained superlattices containing both miscible and immiscible constituents, Pt/Co/Ag and Ag/Co/Pt superlattices, and Au/Ni/Ag and Ag/Ni/Au superlattices, are reviewed.  相似文献   

17.
Since the structure at/near the interface of superlattices influences physical properties such as magnetic property, it is important to investigate details of the structure. The interface structure is characterized by the factors like atomic species, strain, mixing and roughness. The reflection high-energy electron diffraction (RHEED) system installed in our molecular-beam epitaxy (MBE) system enables us to observe, continuously, the change of the surface in-plane lattice constant, which is affected by atomic species, strain and/or mixing, on a realtime basis. Ternary superlattices consisting of three elements can clarify the effect of stacking sequence by comparison between the two types of superlattices with the reverse deposition sequences, since the effect caused by the combination of the same atomic species is cancelled out and the effect caused by the different stacking sequences remains. In the present paper, we review growth behaviors of binary and ternary metallic strained superlattices, especially magnetic ones, investigated mainly by our group, and summarize the discussion on their magnetic properties, mainly on the magnetic anisotropy, in terms of their structural characteristics. First, we introduce our RHEED system that works efficiently under a magnetic field arising from evaporation sources for low vapor-pressure materials. Then, MBE-grown binary strained superlattices, Co/Au, Co/Pt and Cu/Au, are discussed, with comparing to incoherent superlattices of Co/Ag and Cu/Ag having nearly the same lattice mismatch of constituents. Next, we review ternary strained superlattices with immiscible constituents with reverse deposition order, Au/Co/Ag and Ag/Co/Au superlattices, and Au/Co/Cu and Cu/Co/Au superlattices, in relation to the growth behaviors of binary superlattices. Finally, ternary strained superlattices containing both miscible and immiscible constituents, Pt/Co/Ag and Ag/Co/Pt superlattices, and Au/Ni/Ag and Ag/Ni/Au superlattices, are reviewed.  相似文献   

18.
The copper matrix composites reinforced with SiC particulates (Cu/SiCp) were fabricated using a powder metallurgy method with the addition of 0.5, 1.5, 2.5, and 5 wt.% Fe. The microstructure and properties of the composites were studied. The results of this investigation revealed that the addition of Fe improved the interface bonding and mechanical and thermal physical properties of the composites. The fracture mechanism of the Cu/SiCp composites was found to change from interface de-bonding to matrix tearing due to the addition of Fe.  相似文献   

19.
The effect of grain size upon the strength of nanocrystalline iron/copper (Fe/Cu) composites has been explored. Composites of composition 60 Fe/40 Cu (by weight) were produced by consolidation of ball-milled powders, with as-processed grain size ranging from 80 to 150 nm. All composites displayed negligible strain hardening and a symmetric response in tension and compression. The strength increases with diminishing grain size, and the upper and lower yield points are a consequence of the dissolved carbon in the Fe phase. The nanocrystalline composites develop shear bands in both tension and compression, and the geometric evolution of these bands is determined. The width of each band and the average local shear strain within it increases with increasing global plastic strain. AFM measurements reveal that the shear strain within each band has strong spatial gradients.  相似文献   

20.
SnO2 thin films prepared by reactive thermal evaporation on glass substrates were subjected to 120 MeV Ag9+ ion irradiation. The surface topography progression using the swift heavy ion irradiation was studied. It shows creation of unique surface morphologies and regular structures on the surface of the SnO2 thin film at particular fluences. Field Emission Scanning electron microscopy (FE-SEM) and Atomic force microscopy (AFM) are used for investigating the effect of Ag ions at different fluences on the surface of SnO2. The morphological changes suggest that ion assisted/induced diffusion process play a significant role in the evolution of nanostructures on SnO2 surface. The roughness increases from 9.4 to 14.9 with fluence upto 1 × 1012 ions/cm2 and beyond this fluence, the roughness decreases. Ion-beam induced recrystallization at lower fluences and amorphization or disordering of crystals at higher fluences are understood based on the thermal spike model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号