首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
针对轮轨故障噪声信号非平稳性特征,提出一种基于经验模式分解(Empirical Mode Decomposition,EMD)与神经网络的轮轨故障诊断方法。该方法首先对轮轨噪声信号进行经验模式分解,信号分解为若干个基本模式分量(Intrinsic Mode Function,IMF)之和,再选取若干个包含主要故障信息的IMF分量,提取各分量的能量与峭度特征,对各分量的峭度特征综合得到多尺度峭度特征,然后将各分量能量特征与多尺度峭度特征作为神经网络的输入来识别轮轨故障的类型。对车轮扁疤、钢轨波浪磨耗和正常状态的分析结果表明,以EMD方法提取特征参数的神经网络诊断方法比以小波包方法提取特征参数的神经网络诊断方法具有更高的故障识别率。该方法能够对轮轨故障类型进行准确、有效地分类识别。  相似文献   

2.
基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用   总被引:6,自引:5,他引:6  
针对滚动轴承故障振动信号的非平稳特征,提出了一种基于经验模态分解(EmpiricalModeDecomposition,简称EMD)和奇异值分解技术的滚动轴承故障诊断方法。该方法首先采用EMD方法将滚动轴承振动信号分解为多个平稳的内禀分量(IntrinsicModefunction,简称IMF)之和,并形成初始特征向量矩阵。然后对初始特征向量矩阵进行奇异值分解得到矩阵的奇异值,将其作为滚动轴承振动信号的故障特征向量,并输入神经网络来识别滚动轴承的工作状态和故障类型。实验分析结果表明,本文方法能有效地应用于滚动轴承故障诊断。  相似文献   

3.
本文针对发动机滚动轴承故障振动信号的非平稳特征,提出了一种基于小波包变换与神经网络的滚动轴承故障诊断方法。由于滚动轴承发生故障时,加速度振动信号各频带的能量会发生变化,以振动信号小波分解后的能量信息作为特征,以神经网络作为分类器对滚动轴承故障进行识别、诊断。通过对滚动轴承的正常状态、滚珠故障、内圈故障和外圈故障信号的分析,表明以小波包分解为预处理器的神经网络故障诊断方法可以准确、有效地识别滚动轴承的工作状态和故障类型。  相似文献   

4.
基于EMD和功率谱的齿轮故障诊断研究   总被引:8,自引:7,他引:8  
李辉  郑海起  唐力伟 《振动与冲击》2006,25(1):133-135,145
提出了一种基于经验模态分解EMD(Empirical Mode Decomposition)的齿轮裂纹故障诊断的新方法。EMD方法具有自适应的信号分解和降噪能力,EMD是先把时间序列信号,分解成不同特征时间尺度的固有模态函数(Intrinsic Mode Function,简称IMF),然后通过选取表征齿轮裂纹故障的IMF分量进行功率谱分析,就可提取齿轮故障振动信号的特征。齿轮故障实验信号的研究结果表明:该方法能有效地识别齿轮的齿根裂纹故障。  相似文献   

5.
内禀模态特征能量法在滚动轴承故障模式识别中的应用   总被引:1,自引:0,他引:1  
针对滚动轴承振动信号和状态信息非线性映射关系,提出一种基于内禀模态函数(IMF)特征能量的轴承特征向量提取方法,并与支持向量机(SVM)相结合实现轴承的故障识别。该方法对滚动轴承振动信号进行经验模态分解(EMD)得到若干能反映轴承故障信息的IMF分量,选取包含主要信息的IMF能量作为振动信号的特征向量,并将其输入到SVM分类器中实现轴承故障模式识别。对滚动轴承的正常状态、外圈故障、内圈故障和滚动体故障进行仿真试验,结果表明,该方法能够有效、准确地识别轴承故障。  相似文献   

6.
针对滚动轴承振动信号的非平稳特性和现实中难以获得大量典型故障样本的实际情况,提出基于集合经验模态分解(EEMD)能量熵和最小二乘支持向量机(LS-SVM)的滚动轴承故障诊断方法。首先通过EEMD分解将非平稳的原始振动信号分解成若干个平稳的固有模态函数(IMF);滚动轴承同一部位发生不同严重程度的故障时,在不同频带内的信号能量值会发生改变,因此可通过计算振动信号的EEMD能量熵判断发生故障的严重程度;从包含主要故障信息的IMF分量中提取的能量特征作为输入来建立支持向量机,判断滚动轴承的技术状态和故障严重程度,并选用不同核函数对诊断效果进行分析比较。实验结果表明,该方法能有效地应用于滚动轴承的故障诊断。  相似文献   

7.
摘 要:针对滚动轴承振动信号和状态信息非线性映射关系,提出一种基于内禀模态函数(IMF)特征能量的轴承特征向量提取方法,并与支持向量机(SVM)相结合实现轴承的故障识别。该方法对滚动轴承振动信号进行经验模态分解(EMD)得到若干能反映轴承故障信息的IMF分量,选取包含主要信息的IMF能量作为振动信号的特征向量,并将其输入到SVM分类器中实现轴承故障模式识别。对滚动轴承的正常状态、外圈故障、内圈故障和滚动体故障进行仿真试验,结果表明,该方法能够有效、准确的识别轴承故障。  相似文献   

8.
针对电机轴承振动信号的非平稳性、提取的信号不精确的特点,提出一种集合经验模态分解(Ensemble Empirical Mode Decomposition, EEMD)、能量矩的特征提取方法与自组织特征映射网络(Self-organizing Maps, SOM)相结合的故障诊断方法。首先利用EEMD处理原始振动信号,将其分解成一系列具有不同特征时间尺度的固有模态分量(Intrinsic Mode Function, IMF)。由于轴承状态变化,在不同频带下IMF的特征随时间尺度和能量分布的不同而不同,由于能量矩能准确得到IMF的变化能量,故计算出各阶IMF的能量矩构造故障特征向量。其次,利用故障特征向量作为输入来构建SOM网络进行故障识别。最后通过轴承实验验证该方法的正确性。结果表明,该方法采用有限的训练样本就可以快速、准确地诊断滚动轴承故障。  相似文献   

9.
基于LMD与神经网络的滚动轴承故障诊断方法   总被引:4,自引:2,他引:2  
针对滚动轴承的故障振动信号的非平稳特性,提出了一种基于局部均值分解(Local mean decomposition,简称LMD)和神经网络的滚动轴承诊断方法。该方法首先对信号进行局部均值分解,将其分解为若干个PF分量(Product function,简称PF)之和,再选取包含主要故障信息的PF分量进行进一步分析,从这些分量中提取时域统计量和能量等特征参数作为神经网络的输入参数来识别滚动轴承的故障类别。通过对滚动轴承正常状态,内圈故障和外圈故障的分析,表明了基于LMD与神经网络的诊断方法比基于小波包分析与神经网络的诊断方法有更高的故障识别率,同时也证明了该方法可以准确、有效地对滚动轴承的工作状态和故障类型进行分类。  相似文献   

10.
故障轴承振动信号具有分形特征,可以利用分形维数有效识别变速器轴承的故障模式.噪声的存在对分形维数的计算结果影响较大,为此采用经验模态分解(EMD)方法,对变速器轴承振动信号进行EMD分解,计算分解后的IMF分量的分形维数,提取出变速器轴承不同技术状态下的故障特征。对实测变速器轴承振动信号分析,结果表明:EMD能对不同频带信号进行有效分离;特定IMF分量的分形维数能敏感反应变速器轴承技术状态,可以作为变速器轴承故障诊断的特征参数;EMD与分形维数相结合是提取变速器轴承故障特征的一种有效方法。  相似文献   

11.
基于EMD与谱峭度的滚动轴承故障检测改进包络谱分析   总被引:10,自引:7,他引:3  
针对滚动轴承故障振动信号的调制特征和传统包络分析法的缺陷,提出一种基于经验模式分解(Empirical Mode Decomposition,简称EMD)和谱峭度(Spectrum Kurtosis,简称SK)的改进包络谱滚动轴承故障诊断方法。该方法首先对滚动轴承故障振动信号进行经验模式分解,将其分解为多个固有模式函数(Intrinsic Mode Function,简称IMF)之和,然后对各IMF分量傅里叶变换后取其绝对值,并计算其谱绝对值平方包络,在此基础上再计算不同频带IMF分量谱平方包络的峭度,最后利用谱峭度的滤波器作用,选取由轴承缺陷所引起的共振频率所在频带的IMF分量,自动构建最佳包络来进行故障诊断。将该方法应用到滚动轴承内圈缺陷的仿真故障数据和实际数据中,分析结果表明了该方法的有效性。  相似文献   

12.
基于EMD和AR模型的滚动轴承故障诊断方法   总被引:16,自引:0,他引:16  
提出了基于EMD(Empirical Mode Decomposition)和AR模型的滚动轴承故障诊断方法。该方法用EMD将滚动轴承振动信号分解成若干个平稳的IMF(Intrinsic Mode Function)分量,对每一个IMF分量建立AR模型,以模型的自回归参数和残差的方差作为特征向量建立Mahalanobis距离判别函数,进而判断滚动轴承的工作状态和故障类型。实验结果分析表明,该方法能有效地应用于滚动轴承的故障诊断。  相似文献   

13.
基于改进的Hilbert-Huang变换的滚动轴承故障诊断   总被引:1,自引:2,他引:1  
李常有  徐敏强  郭耸 《振动与冲击》2007,26(4):39-41,50
由于Hilbert-Huang变换中的EMD(empirical mode decomposition EMD)在低频段产生多余的IMF(intrinsic mode functions IMF)这一缺陷,故在滚动轴承故障诊断应用中也遇到相应的麻烦。文中提出用每个IMF的能量与原始信号的能量比作为判断标准来剔出分解中产生的多余IMF,并且选择能量比最大的IMF进行边际谱的计算,再选取幅值最大处的频率与轴的旋转频率之比作为表征滚动轴承状态的特征向量,然后采用线性神经网络进行状态识别。实验结果表明,该方法是一种非常有效的滚动轴承故障诊断方法。  相似文献   

14.
针对故障诊断中采用EMD方法存在模态混叠现象,引起故障特征提取精度低的问题。提出了一种解相关多频率经验模态分解(Decorrelation Multiple-Frequency Empirical Mode Decomposition,DMFEMD)方法,首先对初始信号添加多个频率的掩蔽信号,初步分解其中不同频率比的信号分量得到多个IMF分量;其次计算相邻IMF之间的相关系数并对其解耦,进一步分离IMF中存在混叠的部分,得到最优IMF;最终,从原始信号中减去最优IMF,然后重复上述步骤,直到残余分量为常数或单调。由于保证了IMF之间互不相关且互不干扰,因此模态混叠现象显著减弱,有效提高故障特征提取精度。利用排列熵算法对一系列最优IMF构造特征样本集,引入SVM建立故障分类模型,实现设备故障诊断。通过试验证明,DMFEMD与传统的方法相比,能有效分离不同频率比混合信号,提高分解效果。同时以轴承振动信号为例,DMFEMD可以更好的提取轴承的故障特征,结合PE与SVM能够实现不同故障类型的高效精确的诊断。  相似文献   

15.
基于能量聚集性的轴承复合故障诊断   总被引:2,自引:0,他引:2  
轴承复合故障类型多样,且部分故障的特征频率相近噪声污染严重。采用经验模态分解(EMD)的方法,在强噪声背景下会引起相近频率故障成分的无法识别,同时也难以提取微弱的故障信号。由此,提出一种基于能量聚集性的轴承复合故障诊断方法。首先借助离散余弦变换(DCT)的频域能量聚集性和奇异值分解(SVD)的时域能量聚集性,对轴承复合故障信号进行预处理,实现降噪并分离频率相近的微弱故障信号。然后对分离出来的不同故障信号进行经验模态分解,去除伪分量,对剩余的本征模态函数进行频谱分析。最后,根据本征模态函数的频谱诊断故障。仿真信号和实测轴承故障诊断信号分析表明,与直接使用EMD进行轴承复合故障诊断相比,该方法能够在强背景噪声下准确分离频率相近的微弱故障分量,改善复合故障诊断的准确性。  相似文献   

16.
孟宗  李姗姗 《振动与冲击》2013,32(14):204-208
利用Hilbert-Huang变换(Hilbert-Huang Transformation,简称HHT)对滚动轴承进行故障诊断时,发现振动信号中包含的噪声对诊断结果影响较大。为克服此不足,提出了一种小波改进阈值法与HHT相结合的信号分析方法。该方法首先应用小波改进阈值方法对滚动轴承故障信号进行预处理,然后对去噪后的信号进行经验模态分解(Empirical Mode Decomposition,简称EMD),接着选取含有故障信息的本征模函数(Intrinsic Mode Function,简称IMF)分量进行边际谱分析,从而提取出故障特征频率,并判断故障类型。仿真和实验结果验证了该方法的有效性。  相似文献   

17.
一种基于样本熵的轴承故障诊断方法   总被引:9,自引:2,他引:7       下载免费PDF全文
赵志宏  杨绍普 《振动与冲击》2012,31(6):136-140,154
运用非线性动力学参数样本熵作为特征,对轴承正常、内圈故障、滚动体故障、外圈故障四种工况的振动信号进行分析识别。针对利用原始振动信号的样本熵只能在一个尺度域进行分析,无法准确区分轴承运行状况的问题,提出一种基于集成经验模式分解与样本熵的轴承故障诊断方法。首先利用集成经验模式分解方法将原始振动信号分解为有限个内蕴模式分量,从中选取包含故障主要信息的前几个内蕴模式分量的样本熵作为特征,然后利用支持向量机进行轴承故障诊断,这样可以在多个尺度对轴承信号进行分析,提高了轴承故障诊断的准确率。通过轴承故障实测信号的诊断实验,证明了该方法的可行性和有效性。  相似文献   

18.
基于EMD模糊熵和SVM的转子系统故障诊断   总被引:1,自引:0,他引:1  
提出一种经验模态分解、模糊熵和支持向量机相结合的转子系统故障诊断方法。该方法首先对转子系统故障信号进行经验模态分解,得到若干阶表征故障信息的固有模态函数,并运用基于能量原理的虚假模态消除方法剔除虚假模态分量;再利用模糊熵能够表示信号复杂程度且具有相对稳定性等特点,选取前4阶固有模态函数的模糊熵值作为各故障信号的特征向量;最后将该特征向量输入到支持向量机中进行转子系统的故障分类。试验结果表明,该方法能够有效的提取转子系统故障特征和对转子系统进行故障诊断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号