首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
An experimental study was conducted to assess the structural performance of repair welds in an ex-service 1Cr-1Mo-0.25V steam turbine casing material. Material from two weld techniques, one involving a post-weld heat-treatment that produced undermatched welds and the other involving a temper bead welding technique that produced overmatched welds were tested. Both welding techniques were implemented in two base metal conditions giving rise to four different welds and two different base metal conditions. The tests conducted included tensile tests, creep tests, fracture toughness tests, fatigue crack growth tests, creep crack growth tests, and creep-fatigue crack growth tests on the base metal, weld metal and the weldment region.The yield strength of the weld metal in the undermatched condition was approximately 10% lower than the base metal, while the weld metal in the overmatched condition had a yield strength that was 30% higher than the base metal at 565 °C. The creep deformation rates in the undermatched welds were 60 times faster than the base metal at a stress of 207 MPa. In the overmatched welds, the creep rates at 207 MPa were about 2.8 times faster in one case and 2.8 times slower in the other.The crack path in fracture toughness specimens followed the interface between the transition layer and the weaker of the weld metal and the base metal. The J-resistance curves for the weldments at 565 °C showed significant variability among duplicate samples from the same welds. This scatter was caused by the variability in the location of the precrack with respect to the fusion line and the location of the low fracture toughness region in the weldment. This behavior was explained using a novel approach for characterizing the fracture of welds. The creep-fatigue crack growth rates at equivalent (Ct)avg values in undermatched welds was higher than the crack growth rates in the overmatched weld samples. In all cases under creep-fatigue, the crack appeared to grow in the weaker of the base metal and the weld metal. Recommendations for future work are provided to enhance the theoretical underpinnings of the nonlinear fracture mechanics frame-work to rigorously address fracture and crack growth in welds.  相似文献   

2.
The creep behaviour of a creep-resistant AE42 magnesium alloy reinforced with Saffil short fibres and SiC particulates in various combinations has been investigated in the transverse direction, i.e., the plane containing random fibre orientation was perpendicular to the loading direction, in the temperature range of 175–300 °C at the stress levels ranging from 60 to 140 MPa using impression creep test technique. Normal creep behaviour, i.e., strain rate decreasing with strain and then reaching a steady state, is observed at 175 °C at all the stresses employed, and up to 80 MPa stress at 240 °C. A reverse creep behaviour, i.e., strain rate increasing with strain, then reaching a steady state and then decreasing, is observed above 80 MPa stress at 240 °C and at all the stress levels at 300 °C. This pattern remains the same for all the composites employed. The reverse creep behaviour is found to be associated with fibre breakage. The apparent stress exponent is found to be very high for all the composites. However, after taking the threshold stress into account, the true stress exponent is found to range between 4 and 7, which suggests viscous glide and dislocation climb being the dominant creep mechanisms. The apparent activation energy Qc was not calculated due to insufficient data at any stress level either for normal or reverse creep behaviour. The creep resistance of the hybrid composites is found to be comparable to that of the composite reinforced with 20% Saffil short fibres alone at all the temperatures and stress levels investigated. The creep rate of the composites in the transverse direction is found to be higher than the creep rate in the longitudinal direction reported in a previous paper.  相似文献   

3.
This study examined the effects of Ca and Sr addition on the creep and corrosion properties of Mg-Al-Sn based alloys with the aim of developing new Mg-Al-Sn-x alloys for automotive powertrain applications. The materials were cast using the squeeze casting process to obtain a dense microstructure without pores. Creep tests were carried out at a constant temperature between 150 °C and 200 °C and a constant applied stress between 50 and 80 MPa until the minimum creep rate had been reached. Potentiodynamic and immersion tests were carried out to evaluate corrosion properties of the alloys. The creep and corrosion resistance were improved by adding Ca and Sr.  相似文献   

4.
The 2¼Cr1Mo (P22) is present in most of structural high-temperature applications, as results from a review on materials employed for the construction of both power and chemical plants. So, it fits well for an experimental activity in the laboratory as reference material. ISPESL, the Italian Certification Agency, carried out a low-budget program of creep and low-cycle fatigue (LCF) tests at 550 °C; the specimens (twelve plus two spare) of as-fabricated material came from a thick-wall pipe with a certified circumferential weld. They were base metal and cross-weld fusion-line centered ones. Comparison of the resistance curves obtained from LCF tests with those from codes (ASME and ISPESL) showed for the base metal good correspondence; therefore, showed the reliability of the test proceeding. For the weld it showed instead conservatism reduction at high-strain levels for the ASME design curve; moreover, it revealed an insufficient conservatism of the reduction factor proposed, which is 1/2, for the lower bound ISPESL curve. Comparison of the resistance curves obtained from creep tests with those from codes showed this: for both the base metal and weld there are a good correspondence and acceptable (low) conservatism of the strength reduction factor (SRF) proposed; for the load and temperature levels considered in the tests, it equals one. Still, the creep tests duration was within thirty hundred hours each; therefore the levels of the applied load (150.2-100 MPa) were not as low as those in typical operation conditions. For these cases, the code (ASME) proposes a lower-than-unity SRF: thus, longer tests (lower levels of the applied load) would be useful, also extending the activity to other materials.  相似文献   

5.
Conventional thermo-mechanical treatment (CTMT) and modified thermo-mechanical treatment (MTMT) process were applied for manufacturing a high nitrogen niobium-stabilized 15Cr-15Ni austenitic alloy. CTMT process consists of 5 h of solution treatment at 1270 °C followed by water quenching and subsequent aging at 820 °C for 50 h. MTMT process differs from CTMT process in hot plastic deformation performed immediately after the solution treatment at 1270 °C and longer aging time. Microstructure and creep properties of the steel obtained by both processing routes were investigated. Creep rupture tests at 750 °C showed double increase in rupture time brought about by MTMT process. Examination of crept microstructure by transmission electron microscopy revealed that the improved creep properties in MTMT process were mainly due to improved distribution uniformity of fine nano-sized carbonitride precipitates in the austenitic matrix and that MTMT process has no effects on the number density and distribution of copper precipitates present in the steel. However, the creep ductility in MTMT process drastically reduced comparing to CTMT process. The higher density of grain boundaries due to finer grain recrystallized microstructures and the formation of higher volume fraction of coarser M23C6 precipitates at the boundaries are believed to be the main reason for the lower creep ductility in MTMT process.  相似文献   

6.
As in Germany in the year 2015 the next generation of fossil fired power plant with steam parameters up to 700 °C will be erected, intensive R&D work focused on materials capable of operating in that high temperature regime is ongoing. Modern nickel-based alloys offer the possibility to be used for components for the highest temperatures and pressures in such power stations. Nevertheless, martensitic heat resistant 9-12% chromium steels will be widely used for the majority of the components subjected to “lower” temperatures up to 650 °C maximum, as they are much cheaper than nickel-base alloys. By welding these martensitic components, the heat affected zone (HAZ) has to be considered as a location of premature failure due to the change in the material’s microstructure i.e. size and number of precipitates, dislocation density, etc. Thus fully loaded weldments are of specific interest with regard to their possible optimization as well as their inspection during service. To be able to develop optimization strategies to increase the lifetime of welded martensitic components, the better knowledge of the HAZ’s dimension and extent in addition with the understanding of the development of the time dependent complex stress and strain states in this area are mandatory. In this paper, the results of an national funded project [1] focused on the optimization of creep loaded welds in pipes made of 9-11% Cr-steels will be reported. The project was aimed on the evaluation of the influence of the mismatch (in terms of different creep deformation of weld and base metal respectively) on the formation of the local stress situation in the weldment. In the frame of this work, extensive numerical and experimental investigations on component like specimens and lab specimens but also on measuring the temperature fields during the welding process lead to a comprehensive picture of the HAZ. Data of creep tests of thermally simulated HAZ material at various peak temperatures ranging from 780 °C to 1300 °C, of the weld metals but also of the base material formed the basis for a realistic simulation of the weldment’s behaviour. Finally the component tests under long term creep loading situations have been used for the validation of the numerical simulation.  相似文献   

7.
Creep of UHPC in tension and compression: Effect of thermal treatment   总被引:1,自引:0,他引:1  
Steel fiber-reinforced ultra-high performance concrete (UHPC) is of increasing interest for use in precast prestressed concrete highway bridge girders due to its superior durability and the potential for reducing or eliminating shear reinforcement, due to the presence of steel fibers. However, the contributions of creep, and especially tensile creep, to long-term performance must be better understood to develop appropriate design specifications. Due to practical considerations, it is also of interest to investigate the influence of varying thermal treatment, including temperatures lower than those recommended by the manufacturer (i.e. 90 °C), on the creep of UHPC. In this 1-year study, the effects of three different thermal treatment regimes on tensile and compressive creep performance of UHPC are examined, with complementary characterization by nanoindentation and scanning electron microscopy. Results show that UHPC creeps phenomenologically differently in tension and compression. Both thermal treatments examined resulted in similar tensile creep behavior, suggesting that a lower temperature applied over a longer period could effectively cure UHPC. For the non-thermally cured UHPC, a 10 μm wide region observed at the fiber/matrix interface was characterized by reductions in elastic modulus as well as greater porosity and microcracking than the bulk paste. It is suggested that the quality of the fiber/matrix interface is a major contributor to the measured increased creep of non-thermally treated UHPC as compared to UHPC treated at 60 °C or 90 °C.  相似文献   

8.
Two types of high chromium ferritic steels envisaged as construction materials for SOFC interconnects, were investigated in respect to microstructure and creep in the proposed application temperature range from 700 to 800 °C. The steel compositions mainly differed in the amounts of the Laves phase forming elements Nb, W and Si. The steel containing these alloying additions exhibited substantially higher creep resistance in the temperature range 700-800 °C than the high purity steel. The Laves phase formation occurred trans- as well as intragranular whereby the extent and size of grain boundary precipitates increased with increasing exposure time. Especially at 800 °C the precipitates inside the grains virtually completely vanished after longer exposure times and only intergranular precipitates remained. This change in precipitate morphology resulted especially at 800 °C in a decrease of creep resistance with increasing exposure time, although the Laves phase containing steel still exhibited higher creep strength than the high purity steel.  相似文献   

9.
Tensile and impact behavior of dissimilar weld joints of newly developed rotor steels 23CrMoNiWV88 and 26NiCrMoV145 were conducted at various temperatures below 350 °C. Inhomogeneous microstructures and asymmetrical micro-hardness along the dissimilar welding joint were observed. With the increase of temperature, strength decreased which was associated with the increased plasticity, and fracture location changed from weld metal (WM) to intermediate pressure (IP) base metal (BM) at around 300 °C. Compared to the homogeneous impact specimen with two fracture zones at fracture surface, a combined quasi-cleavage and ductile fracture mode with three zones is observed at the fracture surface of the dissimilar weld joint when the testing temperature is in the range of 0–40 °C. The occurrence of separated zones are mainly ascribed to the multi-layer welding process and thus improved the impact toughness of the welding joint.  相似文献   

10.
The tensile creep behavior of an oxide–oxide continuous fiber ceramic composite was investigated at 1200 °C in laboratory air, in steam and in argon. The composite consists of a porous alumina–mullite matrix reinforced with laminated, woven mullite/alumina (Nextel™720) fibers, has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. The tensile stress–strain behavior was investigated and the tensile properties measured at 1200 °C. The elastic modulus was 74.5 GPa and the ultimate tensile strength was 153 MPa. Tensile creep behavior was examined for creep stresses in the 70–140 MPa range. Primary and secondary creep regimes were observed in all tests. Creep run-out (set to 100 h) was achieved in laboratory air for creep stress levels ?91 MPa. The presence of either steam or argon accelerated creep rates and reduced creep lifetimes. Composite microstructure, as well as damage and failure mechanisms were investigated.  相似文献   

11.
Ferritic-martensitic steels of the 9%Cr1%Mo type have been extensively used in power plant components, heat exchangers, piping and tubing, etc., due to an excellent combination of properties such as creep resistance, toughness and resistance to oxidation at high temperatures. In these steels the stabilizing role of MX carbonitrides (M = Nb, V; X = C, N) is one of the main factors responsible for the resistance under creep conditions. The control of precipitation and coarsening of MX phases during prolonged, high temperature tempering or post-weld heat treatment is then a key point to obtain the desirable microstructure and hence, to achieve high temperature resistance under service conditions.In the present contribution we report the evolution of the precipitated phases during heat treatment at 780 °C for increasing times in the range 40 min to 7 h for an ASTM A213 T91 steel. The Nb and V contents in solid solution were determined as a function of the time of treatment and maxima were observed for 5 and 5.66 h, respectively. Creep tests to rupture were also conducted at 600 °C - 190 MPa for as-treated specimens. A maximum creep rate was observed to occur in coincidence with the maximum values of Nb and V contents in solid solution. We suggest possible relationships between the observed second phase evolution and the creep resistance behavior.  相似文献   

12.
The effect of simultaneous alloying with Ca and rare earth (RE) elements on the age hardening kinetics of AZ91 was studied through the fitting of the Johnson-Mehl-Avrami (JMA) equation. The results showed that the addition of both Ca and RE elements not only suppress discontinuous precipitation of the Mg17Al12 phase during the age hardening process, but also decrease the alloy hardness. Fitting the JMA equation to the experimental data indicated that the phase transformation during age hardening of an alloy variant containing both Ca and RE (at 170 °C and 190 °C) and standard AZ91 (at 170 °C) takes place by the nucleation of precipitates on dislocations. In contrast, the precipitation during age hardening of AZ91 at 190 °C occurs via nucleation at grain boundaries. Although it was observed that the creep strength of age hardened specimens are lower than that of the as cast specimens, but age hardening treatment has lower deleterious influence on the creep resistance of the alloy containing Ca and RE in comparison with conventional AZ91. This may be ascribed to the decreased precipitation rate resulting from the addition of both Ca and RE elements.  相似文献   

13.
In order to better understand the effect of stressed-oxidation, the performance of woven Sylramic-iBN fiber-reinforced slurry cast melt-infiltrated (MI) composites were tested in creep and fatigue under non-oxidizing conditions. Initially creep and fatigue tests were performed at 1204 °C in an argon atmosphere; however, it was observed that sufficient oxidizing species existed in the environment to degrade the composites in a manner similar to air environments. Therefore, creep and fatigue tests were performed at 1204 °C in a vacuum environment which showed no evidence of oxidation and superior properties to composites subjected to stressed-oxidation conditions. The mechanical results and microscopy of the vacuum and argon are compared to the behavior of these composites tested in air. It was found that the stress-rupture properties of the vacuum-tested composites could be predicted from single fiber creep rupture data assuming reasonable values for the Weibull modulus.  相似文献   

14.
High temperature titanium matrix composites (TMCs) with different volume fraction of reinforcements were insitu synthesized by casting and hot forging. An effort was made to investigate the mechanical properties as a function of the microstructure of composites. Tensile tests were performed at room temperature, 600 °C, 650 °C and 700 °C respectively. Creep behavior at 650 °C was characterized in the stress range of 200-300 MPa. Results indicated that the composite with 2.11 vol.% reinforcements had the highest tensile strength and lowest steady state creep rate. Morphology of TiB whiskers was critical to mechanical properties of TMCs. TiB whiskers fracture and debonding acted as the dominant failure modes.  相似文献   

15.
High temperature steam electrolysis (HTSE) is one of the most promising technologies for the industrial production of hydrogen. However one of the remaining problems lies in sealing at high temperature. The reference solution is based on glass seals which presents several drawbacks. That explains why metallic seals are under development. The expected seal will be submitted to creep under low stresses between 700 °C and 900 °C, possibly involving complex loading and thermal history. The candidate material investigated in this work is a FeCrAl (OC404, Sandvik) supplied as a 0.3 mm thick sheet. The ability of this material to develop a protective layer of alumina was studied first, as well as grain size growth during thermal ageing. Creep and tensile tests were performed between 700 °C and 900 °C to determine its mechanical properties. This database was used to propose and identify an elasto-viscoplastic behavior for the material. Creep was described by the Sellars-Tegart law. This law was then used to simulate and predict creep indentation tests performed in the same range of temperatures.  相似文献   

16.
In this study, the effect of post-weld heat treatment (PWHT) on the mechanical properties of friction stir-welded 2024 aluminum alloys in the T4 temper state was investigated. Solution heat treatment and various ageing treatments were given to the welded joints. The PWHT procedures caused abnormal coarsening of the grains in the weld zone, which resulted in a drop in micro-hardness at the weld zone compared to the base material of the joints. T6 (190 °C – 10 h) ageing treatment after welding was found to be more beneficial than the other heat treatments in enhancing the mechanical properties of the 2024-T4 joints. However, the T6 (190 °C – 10 h) heat treatment led to significant ductility deterioration in the joint.  相似文献   

17.
This paper describes a novel modelling process for creep crack growth prediction of a 316 stainless steel using continuum damage mechanics, in conjunction with finite element (FE) analysis. A damage material behaviour model, proposed by Liu and Murakami [1], was used which is believed to have advantages in modelling components with cracks. The methods used to obtain the material properties in the multiaxial form of the creep damage and creep strain equations are described, based on uniaxial creep and creep crack growth test data obtained at 600 °C. Most of the material constants were obtained from uniaxial creep test data. However, a novel procedure was developed to determine the tri-axial stress state parameter in the damage model by use of creep crack growth data obtained from testing of compact tension (CT) specimens. The full set of material properties derived were then used to model the creep crack growth for a set of thumbnail crack specimen creep tests which were also tested at 600 °C. Excellent predictions have been achieved when comparing the predicted surface profiles to those obtained from experiments. The results obtained clearly show the validity and capability of the continuum damage modelling approach, which has been established, in modelling the creep crack growth for components with complex initial crack shapes.  相似文献   

18.
Submerged friction stir welding (FSW) in cold and hot water, as well as in air, was carried out for 7050 aluminum alloys. The weld thermal cycles and transverse distributions of the microhardness of the weld joints were measured, and their tensile properties were tested. The fracture surfaces of the tensile specimens were observed, and the microstructures at the fracture region were investigated. The results show that the peak temperature during welding in air was up to 380 °C, while the peak temperatures during welding in cold and hot water were about 220 and 300 °C, respectively. The temperature at the retreated side of the joint was higher than that at the advanced side for all weld joints. The distributions of microhardness exhibited a typical “W” shape. The width of the low hardness zone varied with the weld ambient conditions. The minimum hardness zone was located at the heat affected zone (HAZ) of the weld joints. Better tensile properties were achieved for joint welded in hot water, and the strength ratio of the weld joint to the base metal was up to 92%. The tensile fracture position was located at the low hardness zone of the weld joints. The fracture surfaces exhibited a mixture of dimples and quasi-cleavage planes for the joints welded in cold and hot water, and only dimples for the joint welded in air.  相似文献   

19.
The θ projection method was applied to characterize the creep behavior of the Hastelloy-X alloy at 950 °C. Four θ parameters were established by a nonlinear least square fitting (NLSF) to the creep curves. In the NLSF of the full creep curves, the θ1 and θ2 parameters were not defined with a large error, but the θ3 and θ4 parameters were defined well without an error. An optimum cutoff strain range for defining the four θ parameters was found to be a 3% strain. Four θ parameters revealed a good linearity as a function of stress. The predicted minimum creep rate showed a good agreement with the experimental data. At 950 °C of the Hastelloy-X alloy, the creep curves, the creep rate, and the time to reach a limiting strain were estimated with a wide range of stresses.  相似文献   

20.
The paper deals with the effect of niobium in the wrought AISI 316LN steels on the long-term creep characteristics at 650 °C. Casts B and C contained 0.1 and 0.3 wt.%Nb, respectively. As a reference material the niobium free Cast A was used. Small additions of niobium to the AISI 316LN steel resulted in a significant reduction of the minimum creep rate and shortening of the tertiary creep stage. At time to rupture exceeding 104 h the creep rupture strength of the niobium-bearing Casts B and C was slightly inferior to the Cast A. Two nitrides formed in the Casts B and C: Z-phase and M6X. The minimum creep rate in niobium-bearing casts was favourably affected by precipitation of the Z-phase. The dimensional stability of Z-phase particles was very high, but niobium additions also accelerated the formation and coarsening of η-Laves and σ-phase. Coarse σ-phase particles at grain boundaries contributed significantly to the shortening of the tertiary creep stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号