首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
由于气体放电在材料处理、热核聚变、环境净化以及等离子体推力器等各个前沿科学领域中具有广泛的应用。为了推动气体放电及等离子体理论与应用技术的研究和发展,综述了近年来各种典型气体放电机理的发展。分析了直流辉光放电、介质阻挡放电、大气压辉光放电、电子回旋共振放电、容性耦合射频放电的国内外研究现状,最后介绍了气体放电等离子体的应用领域。  相似文献   

2.
电子回旋共振波等离子体是依靠特殊的电磁波与电学各向异性材料相互作用来实现的,它被证明是一种适用于改进传统真空镀膜工艺的高效技术。与传统辉光等离子体放电系统相比,电子回旋共振波系统的特点是产生高离子电流密度、能量分布集中的等离子体,能够实现半导体薄膜的低压高速沉积,具有离化率高、放电反应室内无电极、适合大面积薄膜沉积等优点。在实际实验及应用中常使用双电源驱动等离子体放电系统,利用电子回旋共振波原理进行等离子体放电,而使用另一个独立的射频(或者直流)电源系统来驱动等离子体束流的引出,在等离子体放电过程中可实现独立、精确控制离子电流密度和离子能量等参数,在半导体薄膜沉积、精密刻蚀、等离子体源等领域有着重要的应用。本文主要介绍了电子回旋共振波等离子体原理、特点,并结合实验与诊断方法朗缪尔探针等技术来展示其研究应用进展。  相似文献   

3.
现代烧结技术在难熔金属材料中的应用   总被引:2,自引:0,他引:2  
微波烧结、放电等离子体烧结、选择性激光烧结作为材料烧结致密化的新技术是活化烧结和快速烧结的有机结合,它们不仅具有升温速度快、烧结时间短、抑制晶粒长大、组织结构可控等独特的优势,而且还具有生产周期短、高效节能的巨大工业应用价值和前景,已成为当今材料领域的研究热点。难熔金属材料及其合金的烧结一直是难熔材料制备和烧结领域的难题,为了进一步探索难熔金属材料及其合金的新型烧结技术,探讨了微波烧结、放电等离子体烧结、选择性激光烧结在难熔金属材料及其合金制备中的应用现状,综述了其工作原理、特点及系统组成。  相似文献   

4.
通过实验和模拟方式,对比分析了介质阻挡放电和基于多孔阳极氧化铝的毛细管等离子体电极放电。应用阳极氧化法制备的多孔阳极氧化铝(Porous anodic alumina,PAA)作为介质层进行了毛细管等离子体电极放电。研究了多孔阳极氧化铝介质层对毛细管等离子体电极放电的影响,对比分析了相同几何参量的介质阻挡放电和毛细管等离子体电极放电的放电过程。结果表明:应用多孔阳极氧化铝介质的毛细管等离子体电极放电更稳定,放电中产生的更密的微放电有助于提高放电的稳定性;多孔阳极氧化铝介质层的毛细管等离子体电极放电具有相对于介质阻挡放电高出两个数量级的电子密度和更高的电子温度。等离子体参数具有与多孔阳极氧化铝的孔分布同步的周期性,产生了等离子体射流模式,提高了放电稳定性。  相似文献   

5.
He—Ar潘宁过程对表面波等离子体的影响   总被引:1,自引:0,他引:1  
潘宁过程可以有效地降低直流、低频放电中的放电起始电压.关于射频放电,特别是表面波等离子体中的潘宁过程的研究,目前还很少有报道.本文介绍了一种由Ro-box装置激发的SWP源,通过实验方式研究了此装置产生的表面波等离子体柱中的He-Ar潘宁过程对其物理性质的影响.结果表明,合适配比的潘宁气体对于表面波等离子体柱特性有很大影响,它可以有效地降低放电起始功率和放电维持功率,延长等离子体柱长度,提高等离子体密度等;在此过程中电子温度略降低.本研究为在表面波等离子体应用中获取合适的等离子体参量提供了新的途径.  相似文献   

6.
利用朗缪尔双探针诊断电弧离子镀等离子体参数   总被引:2,自引:1,他引:1  
本文利用朗缪尔双探针对电弧离子镀等离子体进行了诊断.双探针具有收集电流小的优点(小于离子饱和电流),可以避免探针在高密度电弧离子镀等离子体中被烧坏.利用离散傅里叶变换(DFT)对测量曲线进行平滑,有效地克服了电弧离子镀等离子体放电所固有的强烈波动.探针端部设计能够避免由薄膜沉积造成的探针与支撑杆短路问题.实验结果表明,等离子体密度随着弧电流和气压的增加而增加,而电子温度随着弧电流和气压变化不明显.另外,使用双靶放电等离子体密度和电子温度高于单靶放电.这些结果提供了电弧离子镀等离子体的基本参数,对于材料涂层工艺研究具有积极意义.  相似文献   

7.
随着对材料需求的日渐增长,在材料表面沉积性能优异的薄膜以提高材料的使用性能成为一种趋势。类金刚石薄膜具有高硬度、强的耐腐蚀性能、低摩擦因数、良好的耐磨损性等优势,在工业制造领域受到越来越多的关注。介绍了电子回旋共振等离子体源和表面波等离子体源的原理及在制备DLC薄膜中的应用,分析了沉积过程中影响DLC薄膜性能的主要因素,指出了目前存在的问题,总结了微波等离子体源能够产生大面积的高密度等离子体,且无电极污染等优势,为促进高性能DLC薄膜的制备和应用提供参考。  相似文献   

8.
大气压介质阻挡放电等离子体流动控制是通过介质阻挡放电产生形成等离子体风来影响和控制周围空气流动的一种技术手段,对于提升飞行器的气动性能具有重要意义。其在飞行器减阻增升、发动机扩稳增效等方面具有广阔应用前景,目前已经成为国内外空气动力学领域新兴的研究热点。本文对大气压下空气介质阻挡放电产生的沿面低温等离子体气流加速现象进行了研究,针对不同参数(介质材料、介质厚度、电极种类、放电电压)分析放电过程中等离子体的演化,测量等离子体风速及表面电势。结果表明采用介质厚度为1 mm的云母介质,上电极选择不锈钢刀片形状的电极,放电电压峰峰值为16 k V时,表面介质放电等离子体的气流加速效果更好。该研究可为今后等离子体气流控制方面的研究提供一定的实验参考。  相似文献   

9.
为了研究平面盘香形射频离子源等离子体放电特性,对射频电感耦合离子源内的放电等离子体运用磁流体动力学建立二维磁流体模型进行数值模拟,得到了放电室内等离子体参数分布.结果发现电子由于受双极性电势的约束主要分布在放电室的中心,放电等离子体吸收能量的区域主要在放电室内距天线1 cm附近.对比电子的温度和离子密度分布,在低气压条件下,电子加热的区域和产生电离的区域是分开的,电子加热的区域出现在线圈附近,而最强的电离过程发生在双极性电势最高的位置附近.  相似文献   

10.
等离子体(Plasma)是由电子、阳离子和中性粒子构成的整体呈电中性的物质集合,是除去固、液、气外物质存在的第四态。气体放电、激光压缩、射线辐照及热电离等方法都可产生等离子体,最常用的是气体放电法。高频(High Frequency,HF)热等离子体除具有能量密度大、温度高和冷却速率快等特点外,由于产生等离子体的感应线圈位于等离子体炬外,不会带来电极污染,而且等离子体反应体系气氛可控,因此在制备和处理高纯度粉体材料方面具有明显的优势和潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号