首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
This study focused ice slurry formation in an ice storage system using W/O emulsions with 70 and 80% water contents. Emulsions consisted of a silicone oil–water mixture with a small amount of amino-group-modified silicone oil additive. Ice slurry was formed by cooling the emulsion without ice adhesion to the cooling wall, as water in the emulsion did not directly contact the cooling wall. As the structure of W/O emulsion slowed the propagation rate of supercooling dissolution, voltage and ultrasonic wave were applied to the W/O emulsion to propagate dissolution more quickly and decrease maximum supercooling degree, respectively. Thus, the effects of voltage and ultrasonic wave applications on propagation rate were clarified.  相似文献   

2.
A W/O type emulsion was developed as a new thermal material for ice storage. The water contents of the emulsions were 70, 80 and 90 vol%, and silicone oil was used. An amino group modified silicone oil with 0.9 vol% was used as a surface-active agent. The freezing points of those emulsions were 0 °C. However, due to the emulsion structure, the propagation rate of supercooling dissolution for each emulsion was very slow. Therefore, the propagation rate and maximum supercooling degree were estimated using probability, varying the water content of the emulsion, the method of the ice nucleus charging, and the size and number of ice nuclei. In addition, the influence of various parameters on the propagation rate and maximum supercooling degree was clarified.  相似文献   

3.
A W/O (water-in-oil) emulsion was made from a water–lamp oil mixture with higher water content and a small amount of an additive of amino group-modified silicone oil, and the emulsion could be changed into an ice slurry by cooling with stirring. By using a new continuous ice formation system proposed by one of the authors of this paper, the ice slurry could be formed continuously and stably in an ice formation vessel made of stainless steel. From the experimental results, the conditions were clarified for realizing continuous ice formation for 10 h without ice adhesion to the cooling wall. Moreover, in order to propagate supercooling dissolution of the emulsion effectively and to decrease viscosity in the ice slurry, voltages were applied to the emulsion and ice slurry formed, respectively, and it was clarified that the voltage impression was effective for both.  相似文献   

4.
In order to form ice slurry in ice storage, W/O emulsion was made from water–oil mixture with a small amount of surfactant. And, it was proved that ice slurry could be formed even in a metal vessel, which is expected to improve ice formation rate, without ice adhesion to a cooling vessel wall because of a structural feature of the emulsion. In this paper, authors proposed application of ice slurry to cold storage of foods. In order to apply ice slurry to cold storage of foods, a new harmless ice slurry to human being was formed by cooling a new W/O emulsion made from tap water–edible oil mixture with a small amount of edible emulsifier. And, the fundamental characteristics and availability of new W/O emulsion-ice slurry formed were clarified. Finally, it was concluded that new harmless ice slurry to human being could be fully applied to cold storage of foods.  相似文献   

5.
Water-silicone oil emulsion with an additive, (C2H5O)3SiC3H6NH2, was examined as a heat storage material. A spiral tube used as a heat exchanger was immersed in a low temperature bath and the emulsion was circulated in the tube to make ice continuously. Ice was separated from the ice–liquid suspension in an outlet tank. The amount of formed ice, the temperatures of the inlet and the outlet of the heat exchanger, and the temperatures in the tube wall were measured and the overall heat transfer coefficient and the heat flux through the tube were calculated. Experiments were carried out, varying the flow rate, the temperature of cooling brine, and the thickness of tube wall. The condition under which slurry ice was formed continuously without adhesion of ice to the cooling wall was clarified. Though decrease in the thermal resistance of the tube increased the rate of ice formation or raised the brine temperature, it narrowed the range of the flow rate and of the brine temperature in which slurry ice was formed continuously.  相似文献   

6.
Ice storage is one technique for effective use of thermal energy. So, many studies on slush ice as a thermal storage material have been done. We have also been studying a suspension (slush ice) made from an oil-water mixture by cooling and stirring. From our study results, it was found that an additive having both an amino group (-NH2) and a silanol group (-SiOH) was essential to form a suspension with high IPF without adhesion of ice to the cooling wall. Moreover, ice particles formed in the suspension were dispersed and granular, and did not stick to each other. In the present paper, we carried out experiments to clarify the characteristics of the suspension formation process. From a thermal analysis of the substance formed in the suspension by difference scanning calorimeter (DSC), it was found that the substance was not ice but a compound of ice and additive. Then, at a very small depression of freezing point (about 7°C) all water in the mixture could be frozen by using the additive.  相似文献   

7.
A functional fluid was made by adding a small amount of additive to a water–silicone-oil mixture with 90 vol% water content, and the functional fluid was transformed into an ice slurry by cooling while stirring. The new ice formation system, which authors proposed for ice storage based on the results of previous studies, demonstrated that the ice slurry could be formed continuously for 10 h. In the current paper, experiments were carried out, varying operating conditions, and an optimal operating condition was determined to improve performance of the present system still more. From the experimental results, the conditions necessary to increase the amount of recovery ice were clarified. The time-dependencies of the shape and size of formed ice particles were also shown. Moreover, the reason why the freezing temperature of the functional fluid rose due to repetition of ice formation was clarified, and its measure was discussed. The present study then found that it was possible to form and recover a larger amount of ice than in previous attempts, given the rise in freezing temperature.  相似文献   

8.
A functional fluid composed of an oil–water mixture with an additive is transformed into an ice slurry by cooling while stirring. This paper describes a new continuous ice slurry formation method. Experiments were carried out by varying conditions such as the supply time of functional fluid, the stirrer torque, brine temperature and degree of supercooling. As a result, the characteristics of the ice formation and recovery processes were clarified. It was found that the ice particles gradually became uniform in size and spherical, and grew to 3.5 mm in diameter during about 10 h. The factors influencing the size of formed ice particles were discussed because the larger ice particles were expected to melt more rapidly. The ice particle size was found to increase with decreasing degree of supercooling and cooling rate, and with increasing stirrer wing diameter.  相似文献   

9.
A new method of forming ice, which is one of the dynamic types of ice storage system, is studied. In the method a water-oil emulsion is cooled with stirring in a vessel and changed into an ice-oil and water suspension. A mixture of 10 vol% silicone-oil and 90 vol% water is emulsified with a small amount of an additive. Silane-couplers are tested as the additive and effects of the additive on ice formation process are investigated. Cooling rate is changed and vessels made of various materials are tested. It is proved that the present method has the following characteristics. Ice–oil and water suspension (slush ice) which has a good fluidity is able to be formed without adhering to the cooling surface. Ice in the suspension is granular and dispersed state and the suspension with more than 70% of ice packing factor (IPF) is also able to be formed. The suspension with the high IPF can be preserved for a long time in the granular state.  相似文献   

10.
An emulsion, which was a mixture of silanol-aqueous solution and silicone oil, was investigated as a heat storage material for a dynamic type ice storage system. The emulsion was poured into a vessel, which was immersed into a constant temperature bath at a low temperature, and frozen with stirring. Using stainless steel vessels coated with PFA resin and PTFE vessels with different thickness, the experiments were carried out under various conditions of temperature. Measuring the temperature history in the vessel, overall heat transfer coefficients before the start of freezing and during the ice formation were obtained. The effects of the material of the cooling surface and the thermal resistance of the wall on the ice formation process were clarified. If the heat flux of the wall was less than a critical value, slurry ice was formed without adhesion to the cooling surface. The results obtained under the same condition of the thermal resistance proved that it was effective against ice adhesion to coat PFA resin inside the vessel. It was found by the experiments in which the PTFE vessels were used that the critical value of the heat flux was nearly constant regardless of the thermal resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号