首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wear and corrosion protection using Cr and CrN (PVD coating on Al and Mg) Investigations of the wear behaviour of uncoated Magnesium and Aluminium alloys (AZ 91hp, AlSi 7Mg) are showing very high wear rates of these materials. To improve the wear behaviour both materials were coated with 9 μm CrN using PVD (Physical Vapour Deposition) technology. The tribological behaviour of the coated light metals was tested afterwards by using a plate on cylinder tribometer. Looking at the results, wear is reduced enormously. The great number of defects in the coating of the magnesium alloy is showing almost no influence to the wear behaviour. The corrosion behaviour of chromium and chromium nitride coatings was tested on the magnesium alloy. Because of the defects in the coating, caused by defects like pores in the magnesium, only a short term protection of the alloy can be achieved. The corrosion behaviour of multilayer coatings is better than the behaviour of single layer coatings.  相似文献   

2.
3.
Polymeric film coatings were applied by dip coating on two magnesium alloy systems, AZ31 and Mg4Y, in an attempt to slow the degradation of these alloys under in vitro conditions. Poly(lactic-co-glycolic acid) polymer in solution was explored at various concentrations, yielding coatings of varying thicknesses on the alloy substrates. Electrochemical corrosion studies indicate that the coatings initially provide some corrosion protection. Degradation studies showed reduced degradation over 3 days, but beyond this time point however, do not maintain a reduction in corrosion rate. Scanning electron microscopy indicates inhomogeneous coating durability, with gas pocket formation in the polymer coating, resulting in eventual detachment from the alloy surface. In vitro studies of cell viability utilizing mouse osteoblast cells showed improved biocompatibility of polymer coated substrates over the bare AZ31 and Mg4Y substrates. Results demonstrate that while challenges remain for long term degradation control, the developed polymeric coatings nevertheless provide short term corrosion protection and improved biocompatibility of magnesium alloys for possible use in orthopedic applications.  相似文献   

4.
Magnesium alloys have unique advantages to act as biodegradable implants for clinical application. The biodegradable behaviors of AZ31 in simulated body fluid (SBF) for various immersion time intervals were investigated by electrochemical impedance spectroscopy (EIS) tests and scanning electron microscope (SEM) observation, and then the biodegradable mechanisms were discussed. It was found that a protective film layer was formed on the surface of AZ31 in SBF. With increasing of immersion time, the film layer became more compact. If the immersion time was more than 24 h, the film layer began to degenerate and emerge corrosion pits. In the meantime, there was hydroxyapatite particles deposited on the film layer. The hydroxyapatite is the essential component of human bone, which indicates the perfect biocompatibility of AZ31 magnesium alloy.  相似文献   

5.
镁合金浸锌合金溶液中金属离子对浸锌层的影响   总被引:2,自引:0,他引:2  
镁合金电镀或化学镀之前一般均需要进行浸锌处理,浸锌层的质量直接影响到镀层和基体间的结合力,也关系到镀层的耐蚀性等.为提高镀层的结合力与耐蚀性,采用扫描电子显微镜(SEM)、能谱仪(EDS)、塔菲尔极化曲线等方法,对比研究了一元Zn,二元Zn-Fe,Zn-Ni,Zn-Co,Zn-Cu以及三元Zn-Ni-Fe等浸锌工艺在AZ91D镁合金上获得的浸锌层,并详细分析了各种金属离子对浸锌层形成过程的影响.结果表明:Ni2+的加入既能提高镀层的覆盖率,又能使镀层结合力提高;Fe3+的加入可以细化浸锌层的晶粒;Cu2+的加入可以提高镀层的覆盖率,使浸锌铜镀层的覆盖率达到了99.1%;Co2+对镀层的性能有不好的影响,既降低了镀层的覆盖度,又降低了镀层的结合力.  相似文献   

6.
为了在镁合金表面获得高效的复合防护涂层,采用高固体组分增强有机涂层的方法,对A231镁合金阳极氧化处理后电泳沉积聚氨酯,然后分别加压包覆刚玉粉、铝粉、锌粉,获得了3种高固体组分的聚氨酯复合涂层.采用SEM、极化曲线、交流阻抗和盐雾试验对复合涂层的结构及性能进行了研究.结果表明:3种粉体可牢固镶嵌于聚氨酯中,形成与基体结...  相似文献   

7.
A phosphate–permanganate conversion coating was applied as the pretreatment process for AZ91D magnesium alloy substrate. Zn–Ni alloys were electrodeposited onto the treated AZ91D magnesium alloy from sulfate bath. The morphology and phase composition of the coatings were determined with X-ray diffraction (XRD) and Scanning Electron Microscope (SEM). The results reveal that the conversion rate depends on pH of solution and treatment time. Salt spray and the electrochemical polarization testing were applied to evaluate the corrosion performance of phosphate–permanganate and Zn–Ni coated alloys. It was found that Ni content in deposit is a function of current density and bath composition. Zn–13 wt.% Ni coating provides very good corrosion protective function to inner AZ91D magnesium alloy. Phosphate–permanganate treatment enhances the corrosion resistance of Zn–Ni coatings.  相似文献   

8.
Surface modification can be an effective way to control the biodegradation behavior of magnesium alloys and even improve their biological properties. Much attention has been paid to the initial protection ability and biological properties of magnesium alloys coating. In this work, the dynamic behaviors of a Ca-P coated AZ31B magnesium alloy during the degradations in vitro and in vivo, including hemolysis, mechanical loading capability and implantation in animals, were investigated. The hemolytic rates of the alloy with and without coating were all declined to be lower than 5% after more than 20 days immersion in PBS, though an increase happened to the alloy at the early immersion of 3-7 days. Reduction of the mechanical loading capacity was gradually evolved for the coated alloy and the peak load retention of 85% was still maintained after 120 days degradation. The in vivo implantation indicated that the Ca-P coated AZ31B alloy showed a more suitable time dependent degradation behavior which was favorable for growth of the new tissue and the healing dynamics of bones, making it a promising choice for medical application.  相似文献   

9.
The main challenge for the application of magnesium and its alloy as degradable biomaterials lies in their high degradation rates in physiological environment. In the present work, the biodegradable behavior of a patent magnesium alloy Mg–Nd–Zn–Zr (JDBM) and a reference alloy AZ31 was systematically investigated in Hank's physiological solution. The corrosion rate of JDBM (0.28 mm/year) was much slower than that of AZ31 (1.02 mm/year) in Hank's solution for 240 h. After corrosion products were removed, smooth surface of the JDBM was observed by SEM observation compared to many deep pits on the surface of AZ31. Open-circuit potential and potentiodynamic polarization results manifested that pitting corrosion did not occurred on the surface of JDBM at the early period of immersion time due to the formation of a more protective and compact film layer suggested by electrochemical impedance spectroscopy study. The corrosion rate of magnesium alloys was found to slow down in dynamic corrosion in comparison with that in the static corrosion. This provided the basis for scientific evaluation of in vitro and in vivo corrosion behavior for degradable biomagnesium alloy. The present results suggest that the new patent magnesium alloy JDBM is a promising candidate as degradable biomaterials and is worthwhile for further investigation in vivo corrosive environment.  相似文献   

10.
Microarc oxidation coatings were fabricated on AZ31 magnesium alloy in the electrolyte of sodium phosphate. Potentiodynamic polarization and electrochemical impedance spectroscopy tests were employed to investigate the electrochemical corrosion behavior. The corroded surface was characterized by an optical microscope and X-ray diffraction. The influence of chloride ion concentration on the corrosion resistance of microarc oxidation coated AZ31 alloy is discussed. The corrosion current density enlarged ratio and the charge transfer resistance reduced ratio indicated that the extent of the corrosion damage of microarc oxidation coated AZ31 alloy is much higher when chloride ion concentration is greater than 5%. A corrosion mechanism related to the effect of chloride ion concentrations on the corrosion behavior is proposed.  相似文献   

11.
A protective ceramic coating of about 50 μm thick on a friction stir welded (FSW) joint of AZ31B magnesium alloy was prepared by plasma electrolytic oxidation (PEO) in silicate electrolyte. Electrochemical corrosion behavior of uncoated and coated FSW joints was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The equivalent circuits of EIS plots for uncoated and coated FSW magnesium alloy were suggested. The corrosion resistance of FSW magnesium alloy depended on microstructure of the FSW joint. The heat-affected zone with severe grain growth was more susceptible to corrosion than the stir zone and base metal. The PEO coating consisted of a porous outer layer and a dense inner layer. The inner layer of PEO coating played a key role on corrosion protection of the FSW joint of magnesium alloy. Meanwhile, corrosion potential, corrosion current density and impedance at different zones of coated FSW joint were almost the same. The PEO surface treatment significantly improved the corrosion resistance of FSW joints of AZ31B magnesium alloy.  相似文献   

12.
Magnesium alloys have been investigated as biodegradable implant materials since the last century. Non-uniform degradation caused by local corrosion limits their application, and no appropriate technology has been used in the research. In this study, electrochemical noise has been used to study the pit corrosion on magnesium alloy AZ31 in four types of simulated body solutions, and the data have been analyzed using wavelet analysis and stochastic theory. Combining these with the conventional polarization curves, mass loss tests and scanning electron microscopy, the electrochemical noise results implied that AZ31 alloy in normal saline has the fastest corrosion rate, a high pit initiation rate, and maximum pit growth probability. In Hanks’ balanced salt solution and phosphate-buffered saline, AZ31 alloy has a high pit initiation rate and larger pit growth probability, while in simulated body fluid, AZ31 alloy has the slowest corrosion rate, lowest pit initiation rate and smallest pit growth probability.  相似文献   

13.
张锋刚 《材料保护》2019,52(4):78-84
为了进一步提高镁合金表面Ni-Mo-P镀层的耐蚀性,采用0M、XRD和浸泡试验等方法,研究了退火处理对AZ31镁合金表面Ni-Mo-P镀层组织与腐蚀性能的影响。结果表明:AZ31镁合金阳极氧化-化学镀Ni-Mo-P镀层表面为“胞状”组织,随着退火温度的升高或退火时间的延长,AZ31镁合金阳极氧化-化学镀Ni-Mo-P镀层的胞状组织逐渐细化,但镀层厚度降低,同时,非晶态Ni-Mo-P镀层组织逐渐向晶态转变,350℃退火1.0h具有较高的非晶化程度,退火处理后的Ni-Mo-P镀层由Mg、MgO、Mg2SiO4、Ni和Ni3P组成;退火使AZ31镁合金阳极氧化-化学镀Ni-Mo-P镀层耐蚀性降低,350℃退火1.0 h镀层具有相对较好的耐蚀性,这与镀层的厚度和非晶化程度有关。  相似文献   

14.
Magnesium alloy has similar mechanical properties with natural bone, but its high susceptibility to corrosion has limited its application in orthopedics. In this study, a calcium phosphate coating is formed on magnesium alloy (AZ31) to control its degradation rate and enhance its bioactivity and bone inductivity. Samples of AZ31 plate were placed in the supersaturated calcification solution prepared with Ca(NO3)2, NaH2PO4 and NaHCO3, then the calcium phosphate coating formed. Through adjusting the immersion time, the thickness of uniform coatings can be changed from 10 to 20 μm. The composition, phase structure and morphology of the coatings were investigated. Bonding strength of the coatings and substrate was 2–4 MPa in this study. The coatings significantly decrease degradation rate of the original Mg alloy, indicating that the Mg alloy with calcium phosphate coating is a promising degradable bone material.  相似文献   

15.
Magnesium coatings were fabricated on stainless steel substrates (1Cr11Ni2W2MoV) by a plane magnetron sputtering technique. The argon pressure and the substrate condition (including temperature and the substrate was rotated or fixed) were varied in order to evaluate the influence of the parameters on the crystal orientation and morphology of the coating. The corrosion behavior of the coatings in 1 wt pct NaCl solution was studied by electrochemical methods.The results showed that all coatings exhibited preferred orientation (002) as the argon pressure increased from 0.2 to 0.4 Pa. The morphologies of the coatings varied with the argon pressure and with whether the substrate was rotated or fixed. The open circuit potential of the coatings was more positive than that of cast AZ91D magnesium alloy.However, the immersion test in 1 wt pct NaCI solution showed that the corrosion rates of the coatings were higher than that of cast AZ91D magnesium alloy.  相似文献   

16.
Development of Plasma Anodised Magnesium Alloys for Tribological and Corrosive Complex Applications Sufficient corrosion resistance of technical magnesium alloys is generally ensured by anodising the components in aqueous electrolytes. In the majority of cases these processes bear environmental risks due to the highly toxically electrolytes and are subjected to substantial legal regulations. Considering these facts the plasma anodisation seems to be a prospective method to obtain good corrosion resistance without using toxic substances. The main goal of the plasma anodisation is the substitution of the aqueous electrolyte by an oxygen plasma. The plasma anodised surfaces were well characterized and the corrosion resistance was proved in the salt spray test according to DIN 50021 SS. For the tests the magnesium die cast alloy AZ91 hp was used. The tests included plasma anodised, plasma anodised and PVD coated and only PVD coated specimens. After the salt spray test the surface of plasma anodised specimens showed sporadic filliform corrosion. The plasma anodised specimens showed superior corrosion behaviour in comparison to the only PVD‐ coated ones. The polished magnesium as well as the as casted samples showed more corrosion attack than the anodised specimens.  相似文献   

17.
Corrosion and corrosion fatigue of welded magnesium alloys In addition to the prevalent use of magnesium cast alloys a high potential for lightweight constructions is offered by magnesium‐wrought alloys, in particular in the automobile industry. The use of rolled and/or extruded magnesium alloys (profiles and sheet metals) requires suitable and economic join technologies like different welding procedures in order to join semi finished parts. Thus, the realization of lightweight constructions asks for high standards of materials‐ and joining‐technologies. In this context, the mechanical properties as well as the corrosion behaviour of the joints are of large interest. During welding of magnesium alloys, influences concerning the surface, the internal stresses and the microstructure occur. These influences particularly depend on the energy input and thus, on the welding procedure as well as the processing parameters, which all affect the corrosion behaviour of the joints. Sheets of magnesium alloys (AZ31, AZ61, AZ91) were joined with different welding procedures (plasma‐, laser beam‐ and electron‐beam welding in the vacuum and at atmosphere). The corrosion behaviour (with and without cyclic mechanical loading) of the welded joints was investigated by different methods such as corrosion tests, polarisation curves, scanning electron microscopy and metallography. Furthermore, substantial influencing variables on the corrosion behaviour of welded joints of magnesium alloys are pointed out and measures are presented, which contribute to the improvement of the corrosion behaviour.  相似文献   

18.
Laser treatment of magnesium   总被引:9,自引:0,他引:9  
Magnesium alloy (AZ31B) was irradiated in air using a pulsed KrF excimer laser. The surface of the irradiated magnesium exhibited a wavy topography and its surface roughness was found to depend on the laser power density. The corrosion behaviour of the laser-treated magnesium was studied and it was found to be slightly better than that of the untreated magnesium.  相似文献   

19.
Magnesium (Mg) and its alloys are emerging as a possible biodegradable implant material. However, Mg implants may degrade too quickly in the body, before the natural healing process is complete. In this work, anodization was investigated to slow down the initial corrosion of Mg in a simulated body corrosive environment. Pure Mg and AZ91D alloy were anodized and their corrosion resistance was compared in terms of anodization behavior and parameters such as applied voltage and current with different anodization time. Electrochemical impedance spectroscopy, DC polarization, and immersion testing were used to evaluate the corrosion resistance of Mg samples and further optimize anodization parameters. The results showed that anodization increased the corrosion resistance of both pure Mg and AZ91D samples. Further characterization showed the anodized layers on both pure Mg and AZ91D consisted of Mg, O and Si, in the mixture of MgO and Mg2SiO4.  相似文献   

20.
Preparation of titanium film on magnesium substrate faces a challenge due to non-Fickian inter-diffusion between titanium and magnesium. Aluminum can build a bridge between titanium and magnesium. Al/Ti duplex coatings were deposited on magnesium alloy AZ31B using magnetron sputtering (MS). The low temperature diffusion bonding behavior of the Mg/Al/Ti coating was investigated through SEM and its affiliated EDS. The phase structure and critical load of the coatings were examined by means of XRD and scratch tests, respectively. The results demonstrated that the bonding strength was significantly improved after a post heat treatment (HT) at a temperature of 210°C. The diffusion mechanism of the interfaces of Mg/Al and Al/Ti in the coating was discussed based on the analysis of formation energy of vacancies and diffusion rates. The Al/Ti dual layer enhanced the corrosion resistance of the alloy. And the HT process further increased the corrosion resistance of the coated alloy. This result implies that a post HT at a lower temperature after MS is an effective approach to enhance the bonding strength and corrosion resistance of the Al/Ti film on Mg alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号