首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a method to compute consistent response sensitivities of force‐based finite element models of structural frame systems to both material constitutive and discrete loading parameters. It has been shown that force‐based frame elements are superior to classical displacement‐based elements in the sense that they enable, at no significant additional costs, a drastic reduction in the number of elements required for a given level of accuracy in the computed response of the finite element model. This advantage of force‐based elements is of even more interest in structural reliability analysis, which requires accurate and efficient computation of structural response and structural response sensitivities. This paper focuses on material non‐linearities in the context of both static and dynamic response analysis. The formulation presented herein assumes the use of a general‐purpose non‐linear finite element analysis program based on the direct stiffness method. It is based on the general so‐called direct differentiation method (DDM) for computing response sensitivities. The complete analytical formulation is presented at the element level and details are provided about its implementation in a general‐purpose finite element analysis program. The new formulation and its implementation are validated through some application examples, in which analytical response sensitivities are compared with their counterparts obtained using forward finite difference (FFD) analysis. The force‐based finite element methodology augmented with the developed procedure for analytical response sensitivity computation offers a powerful general tool for structural response sensitivity analysis. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Response sensitivity is an essential component to understanding the complexity of material and geometric nonlinear finite element formulations of structural response. The direct differentiation method (DDM), a versatile approach to computing response sensitivity, requires differentiation of the equations that govern the state determination of an element and it produces accurate and efficient results. The DDM is applied to a force‐based element formulation that utilizes curvature‐shear‐based displacement interpolation (CSBDI) in its state determination for material and geometric nonlinearity in the basic system of the element. The response sensitivity equations are verified against finite difference computations, and a detailed example shows the effect of parameters that control flexure–shear interaction for a stress resultant plasticity model. The developed equations make the CSBDI force‐based element available for gradient‐based applications such as reliability and optimization where efficient computation of response sensitivities is necessary for convergence of gradient‐based search algorithms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A continuum‐based sizing design sensitivity analysis (DSA) method is presented for the transient dynamic response of non‐linear structural systems with elastic–plastic material and large deformation. The methodology is aimed for applications in non‐linear dynamic problems, such as crashworthiness design. The first‐order variations of the energy forms, load form, and kinematic and structural responses with respect to sizing design variables are derived. To obtain design sensitivities, the direct differentiation method and updated Lagrangian formulation are used since they are more appropriate for the path‐dependent problems than the adjoint variable method and the total Lagrangian formulation, respectively. The central difference method and the finite element method are used to discretize the temporal and spatial domains, respectively. The Hughes–Liu truss/beam element, Jaumann rate of Cauchy stress, rate of deformation tensor, and Jaumann rate‐based incrementally objective stress integration scheme are used to handle the finite strain and rotation. An elastic–plastic material model with combined isotropic/kinematic hardening rule is employed. A key development is to use the radial return algorithm along with the secant iteration method to enforce the consistency condition that prevents the discontinuity of stress sensitivities at the yield point. Numerical results of sizing DSA using DYNA3D yield very good agreement with the finite difference results. Design optimization is carried out using the design sensitivity information. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
This study focuses on developing a mixed frame finite element formulation of reinforced concrete and FRP composite columns in order to give more accuracy not only to predict the global behavior of the structural system but also to predict the local damage in the cross-section. A hypo-elastic constitutive law of concrete is presented under the basis of a three-dimensional stress state in order to model the compressive behavior of confined concrete wrapped with FRP jackets. To predict the nonlinear load path-dependent confinement model of FRP-confined concrete, the strength enhancement of concrete was determined by the failure surface of concrete in a tri-axial stress state, and its corresponding peak strain was computed by the strain-enhancement factor proposed in this study. The behavior of FRP jacket was modeled using the two-dimensional classical lamination theory. The flexural behavior of concrete and composite members was defined using a nonlinear fiber cross-sectional approach. The results obtained by developed mixed finite element formulation were verified with the experiments of concrete composite columns and also were compared with a displacement-based finite element formulation. It is shown that the proposed formulation gives e more accurate results in the global behavior of the column system as well as in the local damage in the column sections.  相似文献   

5.
In this work, an enhanced cell‐based smoothed finite element method (FEM) is presented for the Reissner–Mindlin plate bending analysis. The smoothed curvature computed by a boundary integral along the boundaries of smoothing cells in original smoothed FEM is reformulated, and the relationship between the original approach and the present method in curvature smoothing is established. To improve the accuracy of shear strain in a distorted mesh, we span the shear strain space over the adjacent element. This is performed by employing an edge‐based smoothing technique through a simple area‐weighted smoothing procedure on MITC4 assumed shear strain field. A three‐field variational principle is utilized to develop the mixed formulation. The resultant element formulation is further reduced to a displacement‐based formulation via an assumed strain method defined by the edge‐smoothing technique. As the result, a new formulation consisting of smoothed curvature and smoothed shear strain interpolated by the standard transverse displacement/rotation fields and smoothing operators can be shown to improve the solution accuracy in cell‐based smoothed FEM for Reissner–Mindlin plate bending analysis. Several numerical examples are presented to demonstrate the accuracy of the proposed formulation.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The wavelet‐based methods are powerful to analyse the field problems with changes in gradients and singularities due to the excellent multi‐resolution properties of wavelet functions. Wavelet‐based finite elements are often constructed in the wavelet space where field displacements are expressed as a product of wavelet functions and wavelet coefficients. When a complex structural problem is analysed, the interface between different elements and boundary conditions cannot be easily treated as in the case of conventional finite‐element methods (FEMs). A new wavelet‐based FEM in structural mechanics is proposed in the paper by using the spline wavelets, in which the formulation is developed in a similar way of conventional displacement‐based FEM. The spline wavelet functions are used as the element displacement interpolation functions and the shape functions are expressed by wavelets. The detailed formulations of typical spline wavelet elements such as plane beam element, in‐plane triangular element, in‐plane rectangular element, tetrahedral solid element, and hexahedral solid element are derived. The numerical examples have illustrated that the proposed spline wavelet finite‐element formulation achieves a high numerical accuracy and fast convergence rate. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A mixed membrane eight-node quadrilateral finite element for the analysis of masonry walls is presented. Assuming that a nonlinear and history-dependent 2D stress-strain constitutive law is used to model masonry material, the element derivation is based on a Hu-Washizu variational statement, involving displacement, strain, and stress fields as primary variables. As the behavior of masonry structures is often characterized by strain localization phenomena, due to strain softening at material level, a discontinuous, piecewise constant interpolation of the strain field is considered at element level, to capture highly nonlinear strain spatial distributions also within finite elements. Newton's method of solution is adopted for the element state determination problem. For avoiding pathological sensitivity to the finite element mesh, a novel algorithm is proposed to perform an integral-type nonlocal regularization of the constitutive equations in the present mixed formulation. By the comparison with competing serendipity displacement-based formulation, numerical simulations prove high performances of the proposed finite element, especially when coarse meshes are adopted.  相似文献   

8.
This paper presents a versatile low order locking‐free mixed solid‐shell element that can be readily employed for a wide range of linear elastic structural analyses, that is, from thick isotropic structures to multilayer anisotropic composites. This solid‐shell element has eight nodes with only displacement degrees of freedom and few assumed stress parameters that provide very accurate interlaminar stress calculations through the element thickness. These elements can be stacked on top of each other to model multilayer structures, fulfilling the interlaminar stress continuity at the interlayer surfaces and zero traction conditions on the top and bottom surfaces of the laminate. The element formulation is based on the well‐known Fraeijs de Veubeke–Hu–Washizu mixed variational principle with enhanced assumed strains formulation and assumed natural strains formulation to alleviate the different types of locking phenomena in solid‐shell elements. The distinct feature of the present formulation is its ability to accurately calculate the interlaminar stress field in multilayer structures, which is achieved by the introduction of a constraint equation on the interlaminar stresses in the Fraeijs de Veubeke–Hu–Washizu principle‐based enhanced assumed strains formulation. The intelligent computer coding of the present formulation makes the present element appropriate for a wide range of structural analyses. To assess the present formulation's accuracy, a variety of popular numerical benchmark examples related to element convergence, mesh distortion, and shell and laminated composite analyses are investigated and the results are compared with those available in the literature. These benchmark examples reveal that the proposed formulation provides very good results for the structural analysis of shells and multilayer composites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
We present in this paper an efficient and accurate low‐order solid‐shell element formulation for analyses of large deformable multilayer shell structures with non‐linear materials. The element has only displacement degrees of freedom (dofs), and an optimal number of enhancing assumed strain (EAS) parameters to pass the patch tests (both membrane and out‐of‐plane bending) and to remedy volumetric locking. Based on the mixed Fraeijs de Veubeke‐Hu‐Washizu (FHW) variational principle, the in‐plane and out‐of‐plane bending behaviours are improved and the locking associated with (nearly) incompressible materials is avoided via a new efficient enhancement of strain tensor. Shear locking and curvature thickness locking are resolved effectively by using the assumed natural strain (ANS) method. Two non‐linear 3‐D constitutive models (Mooney–Rivlin material and hyperelastoplastic material at finite strain) are applied directly without requiring the enforcement of the plane‐stress assumption. In particular, we give a simple derivation for the hyperelastoplastic model using spectral representations. In addition, the present element has a well‐defined lumped mass matrix, and provides double‐side contact surfaces for shell contact problems. With the dynamics referred to a fixed inertial frame, the present element can be used to analyse multilayer shell structures undergoing large overall motion. Numerical examples involving static analyses and implicit/explicit dynamic analyses of multilayer shell structures with both material and geometric non‐linearities are presented, and compared with existing results obtained from other shell elements and from a meshless method. It is shown that elements that did not pass the out‐of‐plane bending patch test could not provide accurate results, as compared to the present element formulation, which passed the out‐of‐plane bending patch test. The present element proves to be versatile and efficient in the modelling and analyses of general non‐linear composite multilayer shell structures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
基于组合单元的混凝土结构徐变分析方法   总被引:2,自引:0,他引:2  
对混凝土徐变的研究现状和数值计算方法做出评价,提出了混凝土结构徐变计算的空间有限元分析方法。以组合单元为基础,建立混凝土徐变的三维计算模型:将结构的变形、内力状态、结构形式及约束情况均沿时间轴进行划分,再根据结构在每个时间点上各参数的变化值,推导出了混凝土徐变计算的递推公式;又基于虚功原理建立混凝土徐变刚度矩阵,绕过应力与应变,直接通过位移增量计算自由徐变应变增量的等效荷载,提高了徐变数值计算精度;组合单元是对原有实体等参元的继承和拓展,能够分别考虑钢筋和混凝土各自对单元刚度矩阵的贡献,而两者又通过自由度变换的方法有机的结合在一起,构成一种可专门用于模拟钢筋混凝土结构的单元形式。实例分析结果表明:用组合单元做混凝土徐变分析,能够计入钢筋对徐变的阻碍作用,解决在钢筋和混凝土之间的应力重分布问题,更准确的计算出结构变形和内力变化。  相似文献   

11.
钢筋混凝土结构空间有限元分析的体梁组合单元   总被引:11,自引:0,他引:11  
王家林 《工程力学》2002,19(6):131-135
本文提出了一种用于钢筋混凝土结构空间有限元分析的体梁组合单元模型。该模型将混凝土体元内的钢筋作为能承受轴力、剪力、弯矩和扭矩的梁元,根据钢筋和混凝土在单元内的位移协调条件和虚功原理将两者组合成一个单元。体梁组合单元模型能较全面地反映混凝土内钢筋的力学效应,能适应钢筋的任意布置方式,容许用较大的单元对结构进行离散,解决了大型钢筋混凝土结构有限元分析的单元划分问题。数值算例及其与解析解的比较演示了模型的可行性和精度。  相似文献   

12.
陶慕轩  赵继之 《工程力学》2020,37(4):165-177
该文基于弥散裂缝模型,采用通用有限元程序的分层壳单元计算钢筋混凝土构件裂缝宽度的方法。讨论了理论基础,Bazant和Oh提出的经典裂缝带理论主要针对素混凝土构件,严重的局部化效应导致显著的网格依赖性,而将裂缝带理论拓展到工程常用的配筋混凝土构件时,由于多裂缝分布发展的特点,裂缝带宽应修改为平均裂缝间距而使计算结果与网格无关。在理论基础讨论的基础上,给出了采用通用有限元程序的弥散裂缝模型和分层壳单元计算钢筋混凝土构件裂缝宽度的计算流程,其中,平均裂缝间距将有限元分析中的“应变”概念和工程设计中的“裂缝宽度”概念紧密联系起来,是计算流程中最关键的参数。以某承受负弯矩的简支组合梁混凝土板开裂分析为例,验证并讨论了网格相关性、大软化模量导致数值收敛困难的应对策略、平均裂缝间距的决定性作用等重要问题。  相似文献   

13.
We present three velocity‐based updated Lagrangian formulations for standard and quasi‐incompressible hypoelastic‐plastic solids. Three low‐order finite elements are derived and tested for non‐linear solid mechanics problems. The so‐called V‐element is based on a standard velocity approach, while a mixed velocity–pressure formulation is used for the VP and the VPS elements. The two‐field problem is solved via a two‐step Gauss–Seidel partitioned iterative scheme. First, the momentum equations are solved in terms of velocity increments, as for the V‐element. Then, the constitutive relation for the pressure is solved using the updated velocities obtained at the previous step. For the VPS‐element, the formulation is stabilized using the finite calculus method in order to solve problems involving quasi‐incompressible materials. All the solid elements are validated by solving two‐dimensional and three‐dimensional benchmark problems in statics as in dynamics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
15.
We present a finite element formulation based on a weak form of the boundary value problem for fully coupled thermoelasticity. The thermoelastic damping is calculated from the irreversible flow of entropy due to the thermal fluxes that have originated from the volumetric strain variations. Within our weak formulation we define a dissipation function that can be integrated over an oscillation period to evaluate the thermoelastic damping. We show the physical meaning of this dissipation function in the framework of the well‐known Biot's variational principle of thermoelasticity. The coupled finite element equations are derived by considering harmonic small variations of displacement and temperature with respect to the thermodynamic equilibrium state. In the finite element formulation two elements are considered: the first is a new 8‐node thermoelastic element based on the Reissner–Mindlin plate theory, which can be used for modeling thin or moderately thick structures, while the second is a standard three‐dimensional 20‐node iso‐parametric thermoelastic element, which is suitable to model massive structures. For the 8‐node element the dissipation along the plate thickness has been taken into account by introducing a through‐the‐thickness dependence of the temperature shape function. With this assumption the unknowns and the computational effort are minimized. Comparisons with analytical results for thin beams are shown to illustrate the performances of those coupled‐field elements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The purpose of this paper is to develop a finite element model for optimal design of composite laminated thin-walled beam structures, with geometrically nonlinear behavior, including post-critical behavior. A continuation paper will be presented with design optimization applications of this model. The structural deformation is described by an updated Lagrangean formulation. The structural response is determined by a displacement controlled continuation method. A two-node Hermitean beam element is used. The beams are made from an assembly of flat-layered laminated composite panels. Beam cross-section mass and stiffness property matrices are presented.

Design sensitivities are imbedded into the finite element modeling and assembled in order to perform the structural design sensitivity analysis. The adjoint structure method is used. The lamina orientation and the laminate thickness are selected as the design variables. Displacement, failure index, critical load and natural frequency are considered as performance measures. The critical load constraint calculated as the limit point of the nonlinear response is also considered, but a new method is proposed, replacing it by a displacement constraint.  相似文献   

17.
Mixed formulations of frame elements offer significant advantages over more traditional displacement formulations, particularly under large cyclic inelastic deformations including the effects of shear. This paper complements the recent proposal of a consistent variational basis for the mixed formulation of frame elements by supplying the explicit definition of the stress field over the cross‐section. The paper also addresses the numerical stability of the element state determination algorithm in the presence of an ill‐conditioned or even singular section stiffness matrix. The proposed algorithm is based on the eigendecomposition of the section stiffness matrix and uses the Sherman–Morrison–Woodbury formula and the Moore–Penrose pseudoinverse to avoid the inversion of ill‐conditioned matrices in the element state determination. In the extreme case of uniform tension or uniform flexure the section flexibility matrix is split into an elastic and a plastic component before eigendecomposition. With the proposed method the inelastic response of the element under multiple perfectly plastic hinges can be successfully traced. Numerical examples demonstrate the capabilities of the approach. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is devoted to the formulation of a plane scaled boundary finite element with initially constant thickness for physically and geometrically nonlinear material behavior. Special two‐dimensional element shape functions are derived by using the analytical displacement solution of the standard scaled boundary finite element method, which is originally based on linear material behavior and small strains. These 2D shape functions can be constructed for an arbitrary number of element nodes and allow to capture singularities (e.g., at a plane crack tip) analytically, without extensive mesh refinement. Mapping these proposed 2D shape functions to the 3D case, a formulation that is compatible with standard finite elements is obtained. The resulting physically and geometrically nonlinear scaled boundary finite element formulation is implemented into the framework of the finite element method for bounded plane domains with and without geometrical singularities. The numerical realization is shown in detail. To represent the physically and geometrically nonlinear material and structural behavior of elastomer specimens, the extended tube model and the Yeoh model are used. Numerical studies on the convergence behavior and comparisons with standard Q1P0 finite elements demonstrate the correct implementation and the advantages of the developed scaled boundary finite element. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of the present work is to develop a new finite element model for the finite strain analysis of plate structures constituted of shape memory alloy (SMA) material. A three‐dimensional constitutive model for shape memory alloys able to reproduce the special thermomechanical behavior of SMA characterized by pseudoelasticity and shape memory effects is adopted. The finite strain constitutive model is thermodynamically consistent and is completely formulated in the reference configuration. A two‐dimensional plate theory is proposed based on a tensor element shape function formulation. The displacement field is expressed in terms of increasing powers of the transverse coordinate. The equilibrium statement is formulated on the basis of the virtual displacement principle in a total Lagrangian format. The proposed displacement formulation is particularly suitable for the simple derivation of high‐order finite elements. Numerical applications are performed to assess the efficiency and locking performance of the proposed plate finite element. Some additional numerical examples are carried out to study the accuracy and robustness of the proposed computational technique and its capability of describing the structural response of SMA devices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
In the past, the combined finite–discrete element was mostly based on linear tetrahedral finite elements. Locking problems associated with this element can seriously degrade the accuracy of their simulations. In this work an efficient ten‐noded quadratic element is developed in a format suitable for the combined finite–discrete element method (FEMDEM). The so‐called F‐bar approach is used to relax volumetric locking and an explicit finite element analysis is employed. A thorough validation of the numerical method is presented including five static and four dynamic examples with different loading, boundary conditions, and materials. The advantages of the new higher‐order tetrahedral element are illustrated when brought together with contact detection and contact interaction capability within a new fully 3D FEMDEM formulation. An application comparing stresses generated within two drop experiments involving different unit specimens called Vcross and VRcross is shown. The Vcross and VRcross units of ~3.5 × 104kg show very different stress generation implying different survivability upon collision with a deformable floor. The test case shows the FEMDEM method has the capability to tackle the dynamics of complex‐shaped geometries and massive multi‐body granular systems typical of concrete armour and rock armour layers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号