首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multivariate count data are popular in the quality monitoring of manufacturing and service industries. However, seldom effort has been paid on high‐dimensional Poisson data and two‐sided mean shift situation. In this article, a hybrid control chart for independent multivariate Poisson data is proposed. The new chart was constructed based on the test of goodness of fit, and the monitoring procedure of the chart was shown. The performance of the proposed chart was evaluated using Monte Carlo simulation. Numerical experiments show that the new chart is very powerful and sensitive at detecting both positive and negative mean shifts. Meanwhile, it is more robust than other existing multiple Poisson charts for both independent and correlated variables. Besides, a new standardization method for Poisson data was developed in this article. A real example was also shown to illustrate the detailed steps of the new chart. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A control chart is a powerful statistical process monitoring tool that is frequently used in many industrial and service organizations to monitor in‐control and out‐of‐control performances of the manufacturing processes. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been recognized as potentially powerful tool in quality and management control. These control charts are sensitive to both small and moderate changes in the process. In this paper, we propose a new CUSUM (NCUSUM) quality control scheme for efficiently monitoring the process mean. It is shown that the classical CUSUM control chart is a special case of the proposed controlling scheme. The NCUSUM control chart is compared with some of the recently proposed control charts by using characteristics of the distribution of run length, i.e. average run length, median run length and standard deviation of run length. It is worth mentioning that the NCUSUM control chart detects the random shifts in the process mean substantially quicker than the classical CUSUM, fast initial response‐based CUSUM, adaptive CUSUM with EWMA‐based shift, adaptive EWMA and Shewhart–CUSUM control charts. An illustrative example is given to exemplify the implementation of the proposed quality control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The exponentially weighted moving average (EWMA) control chart is one of a potentially powerful process monitoring tool of the statistical process control. The EWMA chart has now been widely used because of its excellent ability to detect small to moderate shifts in the process parameter(s). In this study, we propose a new nonparametric/distribution‐free EWMA chart for efficiently monitoring the changes in the process variability. We use extensive Monte Carlo simulations to compute the run length profiles of the proposed EWMA chart. For a better performance comparison, the proposed EWMA chart is compared with a recent existing EWMA chart that has already shown to have better performance than the existing control charts. It turns out that the proposed EWMA chart performs substantially and uniformly better than the existing powerful EWMA chart. The working and implementation of the proposed and existing EWMA charts with the help of an illustrative example are also included in this study. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
High‐dimensional applications pose a significant challenge to the capability of conventional statistical process control techniques in detecting abnormal changes in process parameters. These techniques fail to recognize out‐of‐control signals and locate the root causes of faults especially when small shifts occur in high‐dimensional variables under the sparsity assumption of process mean changes. In this paper, we propose a variable selection‐based multivariate cumulative sum (VS‐MCUSUM) chart for enhancing sensitivity to out‐of‐control conditions in high‐dimensional processes. While other existing charts with variable selection techniques tend to show weak performances in detecting small shifts in process parameters due to the misidentification of the ‘faulty’ parameters, the proposed chart performs well for small process shifts in identifying the parameters. The performance of the VS‐MCUSUM chart under different combinations of design parameters is compared with the conventional MCUSUM and the VS‐multivariate exponentially weighted moving average control charts. Finally, a case study is presented as a real‐life example to illustrate the operational procedures of the proposed chart. Both the simulation and numerical studies show the superior performance of the proposed chart in detecting mean shift in multivariate processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Exponentially weighted moving average (EWMA) control charts have been widely recognized as a potentially powerful process monitoring tool of the statistical process control because of their excellent speed in detecting small to moderate shifts in the process parameters. Recently, new EWMA and synthetic control charts have been proposed based on the best linear unbiased estimator of the scale parameter using ordered ranked set sampling (ORSS) scheme, named EWMA‐ORSS and synthetic‐ORSS charts, respectively. In this paper, we extend the work and propose a new synthetic EWMA (SynEWMA) control chart for monitoring the process dispersion using ORSS, named SynEWMA‐ORSS chart. The SynEWMA‐ORSS chart is an integration of the EWMA‐ORSS chart and the conforming run length chart. Extensive Monte Carlo simulations are used to estimate the run length performances of the proposed control chart. A comprehensive comparison of the run length performances of the proposed and the existing powerful control charts reveals that the SynEWMA‐ORSS chart outperforms the synthetic‐R, synthetic‐S, synthetic‐D, synthetic‐ORSS, CUSUM‐R, CUSUM‐S, CUSUM‐ln S2, EWMA‐ln S2 and EWMA‐ORSS charts when detecting small shifts in the process dispersion. A similar trend is observed when the proposed control chart is constructed under imperfect rankings. An application to a real data is also provided to demonstrate the implementation and application of the proposed control chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Cumulative conformance count (CCC) control chart is a powerful alternative to the traditional p‐control chart, particularly in monitoring high yield processes with extremely low proportions of nonconformance. However, a prevalent limitation of the CCC control chart is its inability to detect small process deterioration. A sequential Bayesian CCC approach capable of detecting small process deterioration is proposed in this paper. The new approach outperforms the traditional CCC chart in that it does not require a large sample of initial observations of the process, which may be difficult, if not impossible to obtain in practice. Moreover, the approach is self‐starting, and thus may be used in short production runs. A Bayesian updating procedure is developed, which allows for the determination of initial control limits based on only three initial observations or some prior knowledge about the proportion of nonconformance of the process. Values of proportions of nonconformance, ranging from 0.1 to 0.00001, are tested to demonstrate the deterioration detection capability of the new approach in conjunction with the proposed deterioration detection rules. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Recently, monitoring the process mean and variance simultaneously by using a single chart has drawn more and more attention. In this paper, we propose a new single chart that integrates the EWMA procedure with the generalized likelihood ratio (GLR) test statistics for jointly monitoring both the process mean and variance. It can be easily designed and constructed, and its average run length can be evaluated by a two‐dimensional Markov chain model. Owing to the good properties of the GLR test and EMWA, computation results show that it provides quite a robust and satisfactory performance in various cases, including the detection of the decrease in variability and the individual observation at the sampling point, which are very important in many practical applications but may not be well handled by the existing approaches in the literature. The application of our proposed method is illustrated by a real data example from chemical process control. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
With the development of the sensor network and manufacturing technology, multivariate processes face a new challenge of high‐dimensional data. However, traditional statistical methods based on small‐ or medium‐sized samples such as T2 monitoring statistics may not be suitable because of the “curse of dimensionality” problem. To overcome this shortcoming, some control charts based on the variable‐selection (VS) algorithms using penalized likelihood have been suggested for process monitoring and fault diagnosis. Although there has been much effort to improve VS‐based control charts, there is usually a common distributional assumption that in‐control observations should follow a single multivariate Gaussian distribution. However, in current manufacturing processes, processes can have multimodal properties. To handle the high‐dimensionality and multimodality, in this study, a VS‐based control chart with a Gaussian mixture model (GMM) is proposed. We extend the VS‐based control chart framework to the process with multimodal distributions, so that the high‐dimensionality and multimodal information in the process can be better considered.  相似文献   

9.
The exponentially weighted moving average (EWMA) control chart is a well‐known statistical process monitoring tool because of its exceptional pace in catching infrequent variations in the process parameter(s). In this paper, we propose new EWMA charts using the auxiliary information for efficiently monitoring the process dispersion, named the auxiliary‐information–based (AIB) EWMA (AIB‐EWMA) charts. These AIB‐EWMA charts are based on the regression estimators that require information on the quality characteristic under study as well as on any related auxiliary characteristic. Extensive Monte Carlo simulation are used to compute and study the run length profiles of the AIB‐EWMA charts. The proposed charts are comprehensively compared with a recent powerful EWMA chart—which has been shown to be better than the existing EWMA charts—and an existing AIB‐Shewhart chart. It turns out that the proposed charts perform uniformly better than the existing charts. An illustrative example is also given to explain the implementation and working of the AIB‐EWMA charts.  相似文献   

10.
In modern industries, advanced imaging technology has been more and more invested to cope with the ever‐increasing complexity of systems, to improve the visibility of information and enhance operational quality and integrity. As a result, large amounts of imaging data are readily available. This presents great challenges on the state‐of‐the‐art practices in process monitoring and quality control. Conventional statistical process control (SPC) focuses on key characteristics of the product or process and is rather limited to handle complex structures of high‐dimensional imaging data. New SPC methods and tools are urgently needed to extract useful information from in situ image profiles for process monitoring and quality control. In this study, we developed a novel dynamic network scheme to represent, model, and control time‐varying image profiles. Potts model Hamiltonian approach is introduced to characterize community patterns and organizational behaviors in the dynamic network. Further, new statistics are extracted from network communities to characterize and quantify dynamic structures of image profiles. Finally, we design and develop a new control chart, namely, network‐generalized likelihood ratio chart, to detect the change point of the underlying dynamics of complex processes. The proposed methodology is implemented and evaluated for real‐world applications in ultraprecision machining and biomanufacturing processes. Experimental results show that the proposed approach effectively characterize and monitor the variations in complex structures of time‐varying image data. The new dynamic network SPC method is shown to have strong potentials for general applications in a diverse set of domains with in situ imaging data.  相似文献   

11.
The exponentially weighted moving average (EWMA), cumulative sum (CUSUM), and adaptive EWMA (AEWMA) control charts have had wide popularity because of their excellent speed in tracking infrequent process shifts, which are expected to lie within certain ranges. In this paper, we propose a new AEWMA dispersion chart that may achieve better performance over a range of dispersion shifts. The idea is to first consider an unbiased estimator of the dispersion shift using the EWMA statistic, and then based on the magnitude of this shift, select an appropriate value of the smoothing parameter to design an EWMA chart, named the AEWMA chart. The run length characteristics of the AEWMA chart are computed with the help of extensive Monte Carlo simulations. The AEWMA chart is compared with some of the existing powerful competitor control charts. It turns out that the AEWMA chart performs substantially and uniformly better than the EWMA‐S2, CUSUM‐S2, existing AEWMA, and HHW‐EWMA charts when detecting different kinds of shifts in the process dispersion. Moreover, an example is also used to explain the working and implementation of the proposed AEWMA chart.  相似文献   

12.
In this article, we propose a nonparametric EWMA control chart for monitoring the shape matrix of a multivariate process based on a spatial rank test and the exponentially weighted moving average scheme. The proposed control chart is essentially developed using an estimated spatial rank covariance matrix to test the shape matrix of the covariance matrix of multivariate distributions with heavy tails. Based on our simulation studies, the proposed control chart outperforms the only existing nonparametric control chart in many practical out‐of‐control scenarios for monitoring the shape matrix of the covariance matrix of many multivariate processes. Further, we point out the weaknesses of both the nonparametric EWMA control charts for monitoring the shape matrix of multivariate processes in real applications and propose one possible method to overcome these weaknesses. We also use an example from a white wine production process to demonstrate the applicability and implementation of the proposed control chart.  相似文献   

13.
In this article, we propose an exponentially weighted moving average (EWMA) control chart for monitoring the covariance matrix of a multivariate process based on the dissimilarity index of 2 matrices. The proposed control chart essentially monitors the covariance matrix by comparing the individual eigenvalues of the estimated EWMA covariance matrix with those of the estimated covariance matrix from the in‐control (IC) phase I data. It is different from the conventional EWMA charts for monitoring the covariance matrix, which are either based on comparing the sum or product or both of the eigenvalues of the estimated EWMA covariance matrix with those of the IC covariance matrix. We compare the performance of the proposed chart with that of the best existing chart under the multivariate normal process. Furthermore, to prevent the control limit of the proposed EWMA chart developed using the limited IC phase I data from having extensively excessive false alarms, we use a bootstrap resampling method to adjust the control limit to guarantee that the proposed chart has the actual IC ARL(average run length) not less than the nominal level with a certain probability. Finally, we use an example to demonstrate the applicability and implementation of the proposed EWMA chart.  相似文献   

14.
In this paper, we proposed a new bivariate control chart denoted by based on the robust estimation as an alternative to the Hotelling's T2 control chart. The location vector and the variance‐covariance matrix for the new control chart are obtained using the sample median, the median absolute deviation from the sample median, and the comedian estimator. The performance of the proposed method in detecting outliers is evaluated and compared with the Hotelling's T2 method using a Monte‐Carlo simulation study. A numerical example is considered to illustrate the application of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Statistical process control is widely used in industrial processes, service fields, among others. While parametric control charts are useful in certain processes, there is often a lack of enough knowledge about the process distribution. So, nonparametric control charts are needed in such situations. This paper develops a new nonparametric control chart based on the Ansari–Bradley nonparametric test and the effective change point model. Simulation results show that our proposed control chart is superior to other nonparametric control charts in monitoring process variability for most cases. Our proposed control chart is easy in computation, and powerful for monitoring process variability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
A statistical quality control chart is widely recognized as a potentially powerful tool that is frequently used in many manufacturing and service industries to monitor the quality of the product or manufacturing processes. In this paper, we propose new synthetic control charts for monitoring the process mean and the process dispersion. The proposed synthetic charts are based on ranked set sampling (RSS), median RSS (MRSS), and ordered RSS (ORSS) schemes, named synthetic‐RSS, synthetic‐MRSS, and synthetic‐ORSS charts, respectively. Average run lengths are used to evaluate the performances of the control charts. It is found that the synthetic‐RSS and synthetic‐MRSS mean charts perform uniformly better than the Shewhart mean chart based on simple random sampling (Shewhart‐SRS), synthetic‐SRS, double sampling‐SRS, Shewhart‐RSS, and Shewhart‐MRSS mean charts. The proposed synthetic charts generally outperform the exponentially weighted moving average (EWMA) chart based on SRS in the detection of large mean shifts. We also compare the performance of the synthetic‐ORSS dispersion chart with the existing powerful dispersion charts. It turns out that the synthetic‐ORSS chart also performs uniformly better than the Shewhart‐R, Shewhart‐S, synthetic‐R, synthetic‐S, synthetic‐D, cumulative sum (CUSUM) ln S2, CUSUM‐R, CUSUM‐S, EWMA‐ln S2, and change point CUSUM charts for detecting increases in the process dispersion. A similar trend is observed when the proposed synthetic charts are constructed under imperfect RSS schemes. Illustrative examples are used to demonstrate the implementation of the proposed synthetic charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In this article, we propose a new statistic to control the covariance matrix of bivariate processes. This new statistic is based on the sample variances of the two quality characteristics, in short VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these two variances. The reasons to consider the VMAX statistic instead of the generalized variance | S | are its faster detection of process changes and its better diagnostic feature, that is, with the VMAX statistic it is easier to identify the out‐of‐control variable. We study the synthetic chart based on the VMAX statistic. The proposed chart is always more efficient than the chart based on the generalized variance | S |. An example is presented to illustrate the application of the proposed chart. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Several authors have studied the effect of parameter estimation on the performance of Phase II control charts and shown that large in‐control reference samples are necessary for the Phase II control charts to perform as desired. For higher dimensional data, even larger reference samples are required to achieve stable estimation of the in‐control parameters. Shrinkage estimation has been widely studied as a method to achieve stable estimation of the covariance matrix for high‐dimensional data. We investigate the average run length (ARL) distribution of the Hotelling T2 chart when using a shrunken covariance matrix. Specifically, we explore the following questions: (1) Does the use of a shrinkage estimator of the covariance matrix result in reduced variability in the ARL performance of the T2 chart? (2) Does the use of a shrinkage estimator of the covariance matrix result in a reduced occurrence of “strictly multivariate” false alarms on the T2chart? (3) How does shrinkage of the covariance matrix affect the out‐of‐control performance of the T2 chart? We use a simulation study to investigate the use of shrinkage estimation with the Hotelling T2 chart in Phase II. Our results indicate that, while shrinkage estimation affects the ARL performance of the T2 chart, the benefits are small and occur in fairly specific circumstances. The benefits of shrinking may not justify the use of more advanced techniques.  相似文献   

19.
In recent years, the memory‐type control charts—exponentially weighted moving average (EWMA) and cumulative sum (CUSUM)—along with the adaptive and dual control‐charting structures have received considerable attention because of their excellent ability in providing an overall good detection over a range of mean‐shift sizes. These adaptive memory‐type control charts include the adaptive exponentially weighted moving average (AEWMA), dual CUSUM, and adaptive CUSUM charts. In this paper, we propose a new AEWMA chart for efficiently monitoring the process mean. The idea is to first design an unbiased estimator of the mean shift using the EWMA statistic and then adaptively update the smoothing constant of the EWMA chart. The run length profiles of the proposed AEWMA chart are computed using extensive Monte Carlo simulations. Based on a comprehensive comparative study, it turns out that the proposed AEWMA chart performs better than the existing AEWMA, adaptive CUSUM, dual CUSUM, and Shewhart‐CUSUM charts, in terms of offering more balanced protection against mean shifts of different sizes. An example is also used to explain the working of the existing and proposed control charts.  相似文献   

20.
The binomial cumulative sum (CUSUM) chart has been widely used to monitor the fraction nonconforming (p) of a process. It is a powerful procedure for detecting small and moderate p shifts. This article proposes a binomial CUSUM control chart using curtailment technique (Curt_CUSUM chart in short). The new chart is able to improve the overall detection effectiveness while holding the false alarm rate at a specified level. The results of the comparative studies show that, on average, the Curt_CUSUM chart is more effective than the CUSUM chart without curtailment by 30%, in terms of Average Number of Defectives, under different circumstances. The Curt_CUSUM chart can be applied to a 100% inspection as well as a general random sampling inspection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号