首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beam-shaping longitudinal range of a binary diffractive optical element   总被引:3,自引:0,他引:3  
An experimental and theoretical investigation of laser beam shaping using a simple binary diffractive optic is presented. Beam tailoring has been characterized by the experimental determination of two relevant parameters: beam propagation factor M(2) and the beam-shaping longitudinal range, which represents the propagating distance for which the tailored beam remains nearly unchanged.  相似文献   

2.
We have already reported a method for the quasi-absolute test of rotationally symmetric aspheres by means of combined diffractive optical elements (combo-DOEs). The combo-DOEs carry the information for the ideal shape of an aspheric surface under test as well as a spherical wave for the measurement at the cat's eye position. An experimental demonstration of the procedure is given. Measurements with two different designs of combo-DOEs have been conducted, and their relative advantages and disadvantages are discussed.  相似文献   

3.
M R Wang  X G Huang 《Applied optics》1999,38(11):2171-2176
The diffraction-limited spot size limits the optical disk storage capacity and microscopic resolution. We describe a technique to shape a focused Gaussian beam into a superresolving beam by using a diffractive optical element fabricated by laser-assisted chemical etching. The focused shaped beam has a smaller width and a longer depth of focus than a similarly focused Gaussian beam. Using the diffraction-limited shaped beam along with threshold writing, we achieved a written pit size of less than 0.33 mum at a 695-nm laser wavelength, compared with a 0.7-mum focused Gaussian spot size (full width at e(-2) of the peak) with the same focusing lens. The energy conversion efficiency for the beam shaping was ~81%.  相似文献   

4.
Iterative algorithms based on Fourier transform are used for the design of diffractive optical elements (DOEs), which produce a given intensity distribution, usually at the far field. For the near field, these algorithms can also be used by changing the Fourier transform for the Fresnel transform. However, when the distance between the DOE and the observation plane is short, the results obtained with this modification are not always valid. In the present work, we develop a technique for obtaining the desired intensity distribution in the near field using two DOEs in tandem. We have designed an algorithm based on the standard Gerchberg-Saxton algorithm to determine the modulation of the two DOEs. The best results are obtained when the first DOE modulates the amplitude and the second DOE modulates the phase.  相似文献   

5.
The depth of focus of the Gaussian beam is extended by introducing a wavefront phase correction with properly designed diffractive optical elements. Results of the computer simulations show that, compared with other methods, the presented method demonstrates a reduced focal spot size and low sidelobes in a focal domain, within a considerable range of defocusing distances. Experimental results for the visible range diffractive optical element with a focus of 40 mm and a depth of focus that extends to 1 mm agree with the theory.  相似文献   

6.
A new type of diffractive optical element for detecting and measuring the power distribution of transverse modes emanating from radially symmetric laser resonators is presented. It is based on a relatively simple straightforward design of a phase-only diffractive optical element that serves as a matched filter, which correlates between specific prerecorded transverse modes with a certain azimuthal mode order and those in the incident laser light. Computer simulations supported by experimental results demonstrate how such elements can accurately detect modes with spiral phases and provide quantitative results on the modal power distribution.  相似文献   

7.
Pattern formation is one of the many applications of diffractive optical elements (DOEs) for display. Since DOEs have lightweight and slim nature compared to other optical devices, using them as image projection device in virtual keyboards is suggested. In this paper, we present an approach to designing elements that produce distinct intensity patterns, in the far field, for two wavelengths. These two patterns are images of bilingual virtual keyboard. To achieve this with DOEs is not simple, as they are inherently wavelength specific. Our technique is based on phase periodic characteristic of wavefront using iterative algorithm to design the phase profiles.  相似文献   

8.
Abstract

A novel, to our knowledge, multi-wavelength diffractive optical pickup is presented. The pickup enables multi-focus imaging and increases the data transfer rate considerably. Parallel reading of two or more memory layers is possible. The different spots can be controlled independently. The optical pickup consists of different diffractive optical elements (DOEs). The measured full-width at half-maximum (FWHM) spot intensity for the DOE-pickup is 0.76 μm—close to the diffraction limited predicted value of 0.71 μm—indicating good optical performance. The measured highest diffraction efficiencies of the realized DOEs are about 92%.  相似文献   

9.
Diffractive optical element design is an important problem for many applications and is usually achieved by the Gerchberg-Saxton or the Yang-Gu algorithm. These algorithms are formulated on the basis of monochromatic wave propagation and the far-field assumption, because the Fourier transform is used to model the wave propagation. We propose an iterative algorithm (based on rigorous coupled-wave analysis) for the design of a diffractive optical element. Since rigorous coupled-wave analysis (instead of Fourier transformation) is used to calculate the light-field distribution behind the optical element, the diffractive optical element can thus be better designed. Simulation results are provided to verify the proposed algorithm for designing a converging lens. Compared with the well-known Gerchberg-Saxton and Yang-Gu algorithms, our method provides 7.8% and 10.8%, respectively, improvement in converging the light amplitude when a microlens is desired. In addition, the proposed algorithm provides a solution that is very close to the solution obtained by the simulated annealing method (within 1.89% error).  相似文献   

10.
Chen CH  Sawchuk AA 《Applied optics》1997,36(29):7297-7306
A new, to our knowledge, design method for diffractive optical elements (DOE's) is described and compared with existing methods. The technique applies a nonlinear least-squares algorithm to design two-dimensional pure phase DOE's that reconstruct a desired diffraction pattern with high uniformity, efficiency, and signal-to-noise ratio. The technique also uses a phase-shifting quantization procedure that greatly reduces the quantization error for DOE's to a minimum level. In this paper, we compare simulated reconstruction results of DOE's designed by use of these methods with results obtained by the commonly used two-stage iterative Fourier transform design algorithm of Wyrowski. [J. Opt. Soc. Am. A 7, 961, (1990)].  相似文献   

11.
Räsänen J  Peiponen KE 《Applied optics》2001,40(28):5034-5039
An on-line apparatus for accurate measurement of float-glass thickness and edge distortion was built and tested in industrial environments. The intelligent part of the sensor is a diffractive optical element. The theory and construction of the apparatus are described, and data from on-line measurements are presented.  相似文献   

12.
A radially symmetric binary diffractive optical element to generate an optical bottle beam is designed, fabricated, and characterized. Analysis of the numerical simulation and experimental research results shows that the fabricated element is well suited for solving three-dimensional (3D) laser trapping problems.  相似文献   

13.
刘强  张晓波  邬融  田杨超  李永平 《光电工程》2007,34(11):50-54,60
针对衍射光学元件(DOE)的离子束刻蚀工艺,结合掩模套刻过程实例,本文提出了刻蚀误差面形分布的概念.在标量衍射的夫琅和费原理上,进行了误差数值模拟分析及讨论.模拟分析和实验数据结果表明,误差的面形分布在DOE器件的衍射焦斑中心会产生一个明显的光强畸变毛刺亮点,严重破坏了靶场照明的均匀性.  相似文献   

14.
Guntaka SR  Toal V  Martin S 《Applied optics》2002,41(35):7475-7479
A diffractive optical element is described that can be used to implement a very simple self-aligning electronic speckle-pattern interferometer and holographic interferometer that requires only a laser source and a camera in the optical setup.  相似文献   

15.
Roux FS 《Applied optics》1996,35(23):4610-4614
A diffractive optical element (DOE) that performs a wavelet transform on one-dimensional signals is presented. The DOE performs an inner product between the input image and a set of wavelet basis functions. The input image is displayed in a spatial light modulator. It is constructed from a one-dimensional signal that is spread over the second dimension. Simulated results obtained by the use of elementary one-dimensional signals are presented.  相似文献   

16.
ABSTRACT

In this paper, we present experimental results on speckle noise suppression using a completely passive method. The passivity of the method is achieved owing to the absence of any mechanical, electronic, or other dynamic influences on the optical scheme elements. In the experiment, a multimode semiconductor 520?±?5-nm laser with a spectral bandwidth of 2?nm, static two-dimensional (2D) and 2?×?1D diffractive optical elements (DOEs), as well as multimode single-core optical fibre and multimode optical fibre bundle were used. The dependence of the speckle reduction efficiency as a function of the optical fibre type and optical fibre length was measured for different DOEs. A speckle contrast of 0.148 and speckle reduction coefficient of 2.38 were obtained for a 2.5-m-long multimode optical fibre bundle. The experimental results confirmed that it is possible to construct completely passive optical circuits with reduced speckle noises using static multimode optical fibres and diffraction optical elements.  相似文献   

17.
Davis JA  Evans GH  Moreno I 《Applied optics》2005,44(19):4049-4052
We show experimental results for programmable polarization multiplexing of diffractive optical elements (DOEs) onto two liquid-crystal displays (LCDs). The first LCD encodes the two multiplexed phase-only diffractive optical elements. The second LCD acts as a pixelated polarization rotator to change the polarization state for each of these two DOEs. Although the system requires precise alignment, the DOE's and polarization angles are fully programmable.  相似文献   

18.
Rockward WS  O'Shea DC 《Applied optics》1998,37(22):5075-5086
Orienting two identical or complementary diffractive gratings with a small angle between the grating grooves allows a new crossed-grating device to be constructed. This device has an effective profile that varies locally. For understanding the effects of this variation and the diffraction efficiency of the gratings, the local profiles were correlated with the moiré period of the crossed-grating system by use of various techniques. Asymmetric intensity behavior in the first order of the crossed gratings was seen. Effectively, the diffraction efficiency of the crossed gratings yielded a response equivalent to that of a grating with variable blaze that could be useful in optical computing as a passive optical switching device. One of several models is described that creates greater asymmetric behavior.  相似文献   

19.
Critical modeling issues relating to rigorous boundary element method (BEM) analysis of diffractive optical elements (DOEs) are identified. Electric-field integral equation (EFIE) and combined-field integral equation (CFIE) formulations of the BEM are introduced and implemented. The nonphysical interior resonance phenomenon and thin-shape breakdown are illustrated in the context of a guided-mode resonant subwavelength grating. It is shown that modeling such structures by using an open geometric configuration eliminates these problems that are associated with the EFIE BEM. Necessary precautions in defining the incident fields are also presented for the analysis of multiple-layer DOEs.  相似文献   

20.
SK Rajput  NK Nishchal 《Applied optics》2012,51(22):5377-5386
A single channel asymmetric color image encryption scheme is proposed that uses an amplitude- and phase- truncation approach with interference of polarized wavefronts. Instead of commonly used random phase masks, wavelength-dependent structured phase masks (SPM) are used in the fractional Fourier transform domain for image encoding. The primary color components bonded with different SPMs are combined into one grayscale image using convolution. We then apply the amplitude and phase truncation to the fractional spectrum, which helps generate unique decryption keys. The encrypted image bonded with a different SPM is then encoded into a polarization selective diffractive optical element. The proposed scheme alleviates the alignment problem of interference and does not need iterative encoding and offers multiple levels of security. The effect of a special attack to the proposed asymmetric cryptosystem has been studied. To measure the effectiveness of the proposed method, we calculated the mean square error between the original and the decrypted images. The computer simulation results support the proposed idea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号